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ii ~PREFACE

The David W. Taylor Lectures were initiated as a living memorial to

our founder, in recognition of his many contributions to naval architecture

and naval hydrodynamics. Admiral Taylor was a pioneer in the use of hydro-

dynamic theory and mathematics for the solution of naval problems. The

system of mathematical lines developed by Taylor was used to develop many

ship designs for the Navy long before the computer was invented. He

founded and directed the Experimental Model Basin; perhaps most Important

of all, he established a tradition of applied scientific research at the

"Model Basin" which has been carefully nurtured through the decades and

which we treasure and protect today. In the spirit of this tradition, we

invite an eminent scientist in a field closely related to the Center's work

to spend a few weeks with us, to consult with and advise our working staff,

and to give a series of lectures on subjects of current interest.

Our third lecturer in this series is Professor John V. Wehausen of

the University of California, Berkeley. Professor Wehausen gradurted from

the University of Michigan and received his Ph.D. in mathematics from there

in 1938. He is no stranger to the Center or its problems. From 1946 to

1949 he worked here as a mathematician and developed his interest in naval

hydrodynamics. He later became the resident mathematician in the Depart-

ment of Naval Architecture at the University of California, where he

further developed his knowledge of the theory of water waves and the hydro-
H -dynamics of ships. Professor Webausen has trained many outstanding re-

searchers in the field of naval hydrodynamics through his teaching at theHUniversity, and we are most honored that he agreed to be a David W. Taylor

lecturer.
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ABSTRACT

In these lectures several methods are presented that

are useful for solving free-surface boundary-value problems:

separation of variables and the Fourier method, the method

of reduction and reflection, the method of Green fitnctions,

and the method of multipoles. Each method is illustrated

by one or more examples. In the examples the fluid is assumead

to be inviscid and ircompessuible and the flow irrotational.

The boundary conditions have been linearized. The examples

themselves are all concerned with diffraction and forced

motion. Although the methods are applicable to a sich wider

class of problems, this restriction allows a simple formula-

tion of the physical problem and immediate involvement with

the method itself.

J

INTRODUCTION

The analysis of an engineering problem in fluid mechanics usually

proceeds along the following lines. First one selects a model of a fluid:

Navier-Stokes or inviscid, compressible or not, with or without surface

& tension, etc. The decision can usually be based upon an examination of

4 •various physical parameters characterizing the problem. Next a de-

cision must be made with regard to the flow: is it steady or unsteady,

is it irrotational, etc.? Again, this will be based upon physical

parameters (or perhaps a desperate need to avoid complications). The next

step is an exact formulacion of the equations of motion and of the bound-

ary and initial conditions for the fluids and bodies present. (Ideal-

ly this should be accovpanied by existence and uniqueness studies.)

The problem will usually be too difficult mathematically, so the next

step is to replace these equations by other simplcr ones. The region o'

usefulness of these simpler equations will also depend on certain

parameters associated with the pr:oblem. Finally, assuming that the

equations are now tractable, one proceeds to solve them either analyti-

acaly or perhaps by direct numerical approximation methods.



One must grant immediately that the distinction between these steps is

not always clear. Is approximating the Navier-Stokes equations by the Enter

equations really different from approximating the flow about an elongated

body by that given by a slender-body approximation? One might argue that

the first involves a physical parameter associated with the fluid and the

latter a geometrical parameter, but both are approximations. As further

cases are considered, one realizes that the boundaries are fuzzy.

However, these problems, important and fascinating as they are, will

not concern us here for we are going to limit eurselves to just one aspect

of the procedure outlined above, namely, the finding of analytical solutions

once a tractable problem has been formulated. .ndeed, we shall restrict

our attention still further, namely, to problems with a free surface in

which the fluid is assumed to be inviscid, incompressible, and subject to a

gravitational force and in which the flow is assumed to be irrotational.

In addition to these restrictions we shall also assume that the boundary

conditions are linearized.

It is obvious that we are bypassing a host of interesting questions.

We shall not consider how or whether the linearized equations we deal with

can be made part of a systematic approximation scheme. This problem will

be relegated to one of the other "steps" described above. We have re-

stricted the purview of these lectures so drasticcally for the following

reasons. Although a single topic could be selected and developed fairly

intensively, in a set of eight lectures each lecture would have to be

built upon the preceding ones. The audience would necessarily have to

devote some thought between lectures to the topic under discussion in order

to keep the whole development in mind. And, of course, regular attendance

would be necessary. Since the situation is different from a university,

where both outside study and regular attendance can be expected, it seemed

more useful to select a subject that can easily he divided into one- or

two-lecture units so that not too much baggage has to be accumulatd as one

proceeds. I believe and hope that this will not make the lectures less

interestina.

2-i



The lectures will consist of a discussion of the several methods inj

use for finding analytical solutions for free-surface problems. Each

method will be illustrated by one or more examples, which we hope will

themselves have some intrinsic interest. Several of the examples could '

be solved by more than one of the methods, and it would undoubtedly be

interusting to do this. The original intention was not to do so in order

to obtain a greater diversity of physical problems. However, the examples

treated do tend to fall into one area: diffraction and forced harmonic

motion. This was not necessary. It just so happened that such problemsj

seemed to be among the simplest with which to illustrate the various

mkethods.

The methods will be chiefly the following: separation of variablesI

and the Fourier method, the method of reduction arnd reflection, the

method of Green functions, the method of multipole expansions, and, time

permitting,* variational methods. I shall try to indicate some of the4

advantages and disadvantages of each and the limitations in their use.

Since the easiest problems have usually been solved first, the examples

will often not be from the recent literature. On the other hand, they

are also the most useful for purposes of illustration just because they

are fairly simple. I shall try to compensate for this by calling attention

to recent literature in which the method under discusaion has been used.

I do not wish to imply that solving more complex problems simply required

the investigators to turn the crank a little harder. Difficulties almost

always arise in applying one of the methods to a new problem, and it may be

necessary to alter it in some appropriate way.

It did not.

3
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PART 1: THE BASIC EQUATIONS

As coordinate system we begin with an inertial one fixed in the fluid.

We choose it rectangular and right-handed and with Cy directed oppositely

to the force of gravity in both cwo and three dimensions. The undisturbed

water surface will be taken as the (x,z) plane. As stated above, we suppose

the fluid to be inviscid and incompressible and the motion irrotational.

Consequently, there exists a velocity potential 0 (x,y,z,t) with absolute

velocity

SV = ~grad 0 =VO (0xy0 ) (iDi

Conservation of mass gives

xx yy zz (

The three conservation-of-momentum equations (Euler equations) reduce to

Euler integral

1 w2
4D + 2 + gy + p/p = constant (1.3)

If the free surface is represented by

y Y(x,z,t)

then the kinematic bound.-ty condition on the free surface is

4x (xY'z't)Y - Iy + 0 Y + Yt= 0 (1.4)x x y z z

and the dynamic boundary condition is

D (x,Y,z,t) + _ + gY - 0 (1.5)t 2



If a solid boundary is present, then the kinematic boundary condition states

that

0 n V~n (1.6)

at each point of the surface, where V is its velocity at that point. If

the surface is given by

F(x,y,z,t) 0 (1.7)

this condition may be written in the form

ý F + 0 F + D F + F = 0 (1.8)xx yy zz t

Dynamic boundary conditions may also be necessary on solid boundaries.

For example, in the case of freely floating bodies, these take the form of

the Newton equations for motion of a rigid body.

We have stated earlier that we shall consider only linearized problems

without discussing the rationale of the linearization. The Laplace equa-

tion is already linear, but the solution of a nonlinear problem will, not,

of course, be the same as that of a corresponding linearized problem. The

two free-surface conditions become

4? (x,0,z,t) -YI: 0 (1.9)
y I

D (x,O,z,t) + gY = 0 (1.10)

If Y is eliminated, this condition becomes

'D' (x,0,z t) + g = 0 (1.11)
tt y

Linearization of the boundary conditions on solid boundaries is more com-

licated for it will depend upon the nature of the problem and the basis
of the linearization.

5
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The free-surface conditioa (1.11) may appear in different forms,

depending upon the circumstances. If the motion is assumed to be harmonic

in time with frequency 0, we may write

cD(x,y,z,t) 4)1(x,y,z) cos at + • 2 (x,y,z) sin at

-iot
- Re [1e , 4) + (1.12)

Then (1.11) becomes

4)(x,0,z) - LO2 •y 0 (1.13)
a2 y

If it is convenient to use a moving coordinate system x = x + c, y y,

z z, and if 4(x,yz,t) = O(x,y,z,t) then (1.11) becomes

c2_(iOZt) - 2c4) + 0- + 0- 0

xx xt x y

If the motion is steady in the moving coordinate system, then 4 does not

depend on t and the three middle terms drop out.

We assume that these equations and their provenance is, infact, known.

They are given only for ready reference.

,J
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PART 2: THE FO!URIER METHOD

This is probably the oldest and most widely used method for solving 1P

boundary-value problems in mathematical physics. It is the classical method

of separation of variables, determination of eigenfunctions, and expansion

of the solution in them. The expression may take the form of either a sum

or an integral, and we shall give an example of each.

A limitation of the method in application results from the fact that

we usually would like to identify the surface upon which boundary values

are imposed with coordinate surfaces of the variables. This explains why

so many of the examples of classical physics deal with rectangular, circu-
lar, and elliptical cylinders and with rectangular solids, spheres, ellip-

soids, etc. These all fit into some system of variables in which the

equations are separable. However, the possibilities are limited for there

are only eleven coordinate systems in which the three-dimensional Laplace

equation can be separated and five in which the two-dimensional one can be

separated (see e.g., an article by N. Levinson, B. Bogert, and R.M. Redheffer

on pages 241-262 of Volume 7 (1949) of the Quarterly of Applied Mathematics

and references cited there). We shall be concerned only with coordinate

systems in which one of the coordinates is y.

SEPARATION OF VARIABLES

We shall look for a solution in the form

I(x,y,z,t) X(Xz) Y(y) T(t) (2.1)-

Substitution into AID 0 y!.elds

(Xxx -Xz)YT + XY"T 0

or, if •a assume X and Y are not identically zero,

A2X y11

(0 2.2)

7
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Each term on the left-hand side must be a constant, say, a and 8, respec-

tively, where

a 1 8 0 0 (2.3)

Hence

"A2 X -c ' O,Y" -Y 0 (2.4)

It was stated above that one of the situations in which application of

separation of variables is most convenient is where one of the-boundaries

is a coordinate surface. The surface y = 0 is already such a surface. Let

us choose the bottom to be another such. We shall consider two cases. In

one, a horizontal bottom exists at y - -h. In the other, the fluid is

infinitely deep. In the first case, the boundary condition (1.6) becomes

!,,

4P (x,-h,z,t) = 0 (2.5a)
y

In the second case, we shall relax this to the condition

jt (X,y,z,t) ) < M < ' as y c - (2.5b)
y

For the function form (2.1), these imply

Y'(-h) 0 and IY'(y)l < N < as y - -o (2.6)

We next substitute (2.1) into the free-surface condition (1.11) to

obtain

X(x,z)Y(0)T"(t) + SXY'T - 0

or

8



E-- - -... ... . ... . . . .... ....- - .- - -..... ... -.. ......... ........... .. ~- - - - -- .- . ..

T"(t) + g Y (O) T 0

We shall restrict attention to the case where the coefficient of T is posi-

tive and write

02= Y' (O)/Y(O) (2.7)

The solution for T is then

T A cos at + B sin ot (2.8)

Let us now consider the equation for Y,

Y- Y = 0

If we choose a k > 0, then

Y = C eky + D eky

The boundary conditions in (2.6) then yield

Y - cosh k(y + h) and Y - eky (2.9)

respectively. (The multiplicative constant can be safely dropped since
this is already provided for in T in (2.8).)
But now (2.7) gives

a gk and a2 gk tanh kh (2.10)

for h = o and h < •, respectively.

I9 Ij
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From (2.3) and (2.4), we then find that X must satisfy

A2 X + k2 X -0 (2.11)

2XI
Next we choose -k2 < 0. Then

Y - C cos ky + D sin kySI
The boundary condition Y'(-h) =0 yields

Y - cos k(y + h) (2.12)

For infinite depth, boundedness imposes no further condition. However,

from (2.7) we deduce

2 D

2 =gk"

so that we may write

2
Y = cos ky + r sin ky (2.13)

Equation (2.13) reflects only the effect of the free surface and not of the

bottom.

Equation (2.12) substituted into (2.7) gives I
2|

C - gk tan kh (2.14)

The equation for X that is associated with B = - k2 is

A - k2 x =0 (2.15)

10



Let us now suppose that a is fixed and ask what values of k will be
determined for h < - by (2.10) and (2.14). This is easily seen from a
graphical display. We write (2.10) and (2.14) in the form

a2h 1 a2h 1g h- tanh kh and g kh 'an kh (2.16)

A graphical solution of the first equation shows a single solution (seeI Figure 1).

I /i•tanhlkh)! ~.!

kh

Figure 1- Graphic Solution of First Equation in (2.16)

By the same method one finds an infinite number of solutions for the

x isecond equation (see Figure 2).

For the case h < •, we have now obtained the following solutions for P:

Xo(xz) cosh ko(y + h) [A0 cos at + B0 sin at]

(2.17)

gk0 tanh k 0h, A2X + k -2 0

0I

11,
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and

xi(x, a) coB ki(y + h) [Ai cos at + B sin at]

(2.17)02 2
a - gki tan k h, A2 Xi ki 2 x 0-

Sg ~kh

-t kh

I I:
-tsnlkh) •

A
Figure 2 - Graphic Solution of Second Equation found in (2.16)

A sum of such terms (appropriately convergent) will evidently also be a .

solution. With regard to the family of functions

{cosh k0 (y + h), cos kl(y + h), cos k2 (y + h)....} (2.18) j

it is possible to prove the following property: Any pair of functions is

orthogonal on the interval (-h,O), i.e.,

12



0cosh ko(y +h) -as k(y +h) dy 0

o (2.19)

Scos ki(y + h) cos k (y + h) dy = 0 if i j

One may prove also the following theorem:

Theorem: If f(y) is defined and square-integrable on the interval [-,h,O],

chen

f(y) b 0 cosh ko(y + h) - bi coo ki(Y + h) (2.20)0 0,1 1

±~~1

where
4k fO

= 2kh + 2k0h , i(y) cosh k0 (y + h) dy

and

b sin 2 +i(y) cos ki(Y + h) dybi sin 2kih +2klh •

The formulas for the b's follo%, from the orthogonality.

For h - •, we have the following solutions for 0:

13
4 ¶
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x(x.s) e k [A cos at + B sin at],

G2 - gk, A2X + k2X - 0

X(x~x) cos ky +( sin ky (A cue at + B sin at],

(2.21)

k arbitrary, A2X - kx a 0

Do we have anything analogous to the representation theorem (2.20)? There

Sis, in fact, an analog, first given by Havelock in 1929, that tis reducible

to the Fourier-integral theorem. It is as follows:

Theorem: If f(y) is absolutely integrable on (-•,0), then :

0
f(y) =~ . dk .f drf(rI) (k cos ky + V sirnky)(k cos kn + V sin kn)

k+

(2.22)

0

+ 2v ey J f(i) e d, v - 2/g
fI

We may write this in a form more closely analogous to (2.20) by pre-

aenting it as a pair of transforms:

f(y) - b0 e'y + J b(k) (k cos ky + v sin ky) dk

"0 f0
b 2v f(n) e diO k (2n23)

k2 + V2dq,

14
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The proof of (2.22) is by reduction to the ordinary Fourier integral theorem.

It may be presented as follovs:

f (Y) ,,2 dk jodrn f(n) k. cos ky coo krn + k2 si kysi k
2k2  2 2

k2  v (sin ky coo kn + cos ky sin kq)
k2 + v

+ 2v •vy f(n() ev n dr,

I2

2 V
0 ,, " 0Jdk dn f(rj) cos ky coo kn - k2 + o

'~ 2 +sin kMy + nl)

ik + d

0 I

+ 2O e f(n) evrl dn

- dk f dnl f(nl) (cos k(y + nl) + csk(y - r)

IOC

÷ 2 _odn r) - - - 7 hU e

0

0 •ey fn T n,
2-Q

v (y + n

15



- fO dk f (i) dn cos k(y - n), with f (-r) - f (r)

. f(y)

by the usual Fourier integral theorem. We have made use above of the fol-
lowing two integrals:

Cos ', Ima; f x sin
f dx 'e e" ;l I x -dx ie m > O0 a > 0

a + x &" +x

SFurther separation of variables should now depend upon the nature of

the problem to be solved. In one that we shall consider below, a wavemaker

at one end of a rectangular channel, it is natural to use again rectangular

coordinates and to assume X(x,z) - X(x)Z(z). If one wished to find the

wave motion generated by an oscillating vertical post of circular cross

section, one would use polar coordinates. However, as mentioned earlier,

the number of possible configurations is very limited.

We shall determine the functions X(x) and 1(z) for separation in rec-

tangular coordinates. Substitution into (2.11) quickly gives

X-+ •-+ k 0 (2.24)

or

2If y =q > 0, then

Z -C eq + D •-e

and (2.25)

X -E cos (k2 + q2 ) 2 x +F sin (k2 + q2/2x

16
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If 2 -- 2< OS then

Z -tC cos qz + D sin qz (2.26)

and

X -E coo (k 2 -q 2 )l/ 2 x + F sin (k 2 - q2 ) 1 1 2 x if q2 < k2

X E exp (q 2  k2)1/2x + F exp [_(q2 .k2)1/2x] if q 2 > k 2

If we substitute into (2.15), we again obtain (2.24) except that now
2 2at y+ k. k Now if y q > 0,

Z C e + D •e (2.27)

and

X E cos (q 2  k2 )/2x + F sin (q 2 - k 2 )/ 2 x if q2> k2

2 2 1/2 r2221/21 2 2
SX E exp (k -q) x + F exp (k2 q)12 if q < k

24
If y -q < 0, then

Z C cos qz + D sin qz (2.28)

and

X E exp (k2 + q2 1/2x + F [-(k2 + q2)1/2]

This is a complete census of the possibilitites in rectangular coordinates.

Let us now turn to some applications. The first one is a wavemaker

at one end of a semi-infinite rectangular channel. The second is a wave-

maker in a wall bounding the region x > 0, y < 0. The treatments parallel

S 17
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F i
I each other except that the y- and z-dimensions are bounded in one, and in-

finite in the other. The first employs Fourier series in the solution,

ff the second Fourier integrals.

WAVEMAKER IN A CHANNELI, Consider a semi-infinite channel bounded by plane walls at y = -h and j
z 0 and z = b. At x = 0 there is situated a wavymaker that moves accord-

ing to the equation

x - F(y,z) sin at (2.29)

The channel extends to infinity in the direction Ox. In practice, this

can be approximated by having a very efficient wave absorber at the eud

away from the wavemaker. A wide variety of wavemakers, both two- and three-
dimensional, can be described by a proper choice of F(y,z). We shall fur-
ther assume that the motion has persisted for a long time, so that transient j
motions associated with starting the wavemaker have died out and the fluid

motion is also harmonic with frequency c. 1
Let us formulate the mathematical problem. We may evidently take 4? in

the form (liA2) and the free-surface condition in the form (1.13). The

boundary conditions on the sides and bottom will be

z(x,y,O) f •z(X,y,b) O, (x, -h, z) = 0 (2.30)

The linearized boundary condition on the wavemaker corresponding to (1.6) is -

(x (O,y,z,t) = aF(y,z) cos at

or

Ilx(O,y,z) = aF. ¢2x( 0,y'z - 0 (2.31) i

There is still one missing condition, but it will be more interesting to

see this forced upon us later on.

I 18.
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In order to solve this problem, we shall try to use the family of

solutions given in (2.17) together with the solutions for X given in

(2.25)-(2.28). First of all we note that the boundary conditions on the

side walls given in (2.30) cannot both be satisfied with any combination

of the exponential solutions (2.25) or (2.27). These conditions will be

satisfied by the trigonometric solutions (2.26) and (2.28) if we take C

and D such that

Z = cos z, m 0,1,2,.... (2.32)
b

In choosing the X's to go with the Z's, we must retmember that in (2.26)

k must be k0 and in (2.28) k may be any one of the ki (see (2.17)). Finally,

since we are interested only in bounded solutions, we must discard the in-
creasing exponential in the exponential solutions for K. If we now sum all

these elementary solutions with arbitrary multipliers, we anticipate that

the solution to the problem can be written i%' the following form:

xy ) -\(Am- " x - bm sin 02 -PE

cosh k0 (Y + h) cos x mzx' im [k m( ) LoO/2]m

S+ bm exp [- ((•-) - 0 \ x cosh ko(Y + h) cos •-z

-'miM+l L \

r~

exp (mepcos ki(y + h) cos z (2.33)

10

where~ M is the largest integer jjscl 1hatX- < k0 .b

S19
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This function satisfies the Laplace equation, the free-surface condition,

and the conditions on the bottom and sides of the channel; * may be either

or *1
Let us examine the condition (2.31) on the wavemaker:

[2 2, V2
" (Oyz) b -- cosh ko(y + h) cos z

m0fi

+ - -[ k0
2  cosh ko(y + h),'cog 02- z
b 0

m-M+l

+- b [k + cos ki(y + h) cos g - z (2.34)

If we now use the orthogonality of the functions {cosh ko(y + h),
• ~~cod k (y.+ h), i = 1,2, ... )} Stated in (2.19). and the well-known orthogonality';

of the family {cos RE z,m = 0,1,2,...} on the interval 0 < z < b, we may
b-

easily derive the following formulas for the b's:

S2 m 2  1/2
8k0 m

0 b L)

ýA
= dy fdz Ox(O,y,z) cosh ko(Y + 3b) cos •-z, m < M '

(2.35)

- b (sinh 2 kh + 2kh) ( ki2 . b

0

0 b

dy dz d(O,y,z) cosh ko(y - ii) cc ý -- z, m > M 4 1

20-.I

20



-b(sin 2k~h + 2k~h) [k1  +(M")2] bm

0 b

= dy dz 4x(O,y,z) cos ki(y + h) cos -z, i > 1, m > 0
1h 0

In order to determine *l' we replace 4x in (2.35) by OF; to determine

02 by 0. As long as kO is such that it is never equal to mn/b for some

integer m, all coefficients b are uniquely determined. The completeness

of the two orthogonal families for representing functions on -h < y < 0

and 0 < z < b tells us that any square-integrable function F can be so

represented. For the b's are obviously all zero.

Have we now determined the functions *i and 02? Evidently not, for

a0o, ... , aM are not determined for either i or *2 Since we have now satis-

fied all our boundary conditions, we must conclude that either the problem

does not have a unique solution or else that we have not completely forimu-

lated it. Here the latter is true. If there had been another wall at

x - Z > 0, we should have had another boundary condition to determine the

coefficients. We evidently need something to replace it. This is the

radiation condition, which states that waves must propagate down the chan-

nel, i.e., in tho direction Ox. The terms exponential in x play no role in

this condition for they die out as x increases, representing only a local

disturbance near the wavemaker. In order to apply the radiation condition,

we may write the solution in the complete form

V(x,y,z,t) i cos at + 2 sin at

and then choose the a's so that each of these first M terms represents a

progressive wave moving to the rigbt. It is easy to see that this is
g (1) 0 and a (2) = b (i) where the superscripts

achieved by taking a m m m

21 .... . S
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respectJvely refer to arid *2' for then the fizst M terms take the form

1 29

sin k x -t cosh ko(Y + h)yh) cos -- z

This choice of the a's has been forced upon us by the radiation condition,

the latter being necessary to achieve a unique solution. However, if the

problem had been formulated as an initial-value problem in which the motion
started from rest, this solution would have been obtained automatically.

It will be convenient for discussion of its properties to write the
solution in a slightly different form. Define

_ _ _ 8k 0  0 f b TiCm b sinh2kh+2k dy dz F(y,z) cosh ko(y + h) cos - z
0 0 -h 0

(2.36)
= 8ki 10 ob

Cim b [sin2kih+2kih] - dyf dz l(yz) cos ki(y + h) cos m-z

Then 0 is given by

xcosh ko(Y + h) cos •-- z

22 -'1/2
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St~lr,,,_2ikO_ , 1/2- Cm exP { -E[(.) 2 -'k°2]"1/2} c'oshk 0y + h)

Xcos •-z cos Ot

IMPOW

k w )2 11- x cos ki(y + h)

x CosE--" z cos at (2.37)

5b

SAccording to (1.10), the free surf ace itself is given by Y = -g-l~t(x,O,z,t).

if. •'it is as follows:
M hkh 1/2x

2 1/22 Cm o (b
l [ m-0 [ko + _(sn

i e(
r Csk SL Cos aoh (2.zi

tt

Let us examine the solution. It is evident that it breaks down for

any k0 such that k0  mw/b for some integer m. Indeed, the formulas deter-1

mining the b in (2.35) do not do so for the particular a for which this
m

happens, so that we have not, in fact, found a solution for such a value

23.
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of k (or its associated frequency a). Hence, there is an infinite sequence

G la2,y... for which no solution appears to exist. Let us examine the

behavior of (2.38) in the neighborhood of these frequencies.

We shall make a thought experiment in which the frequency a starts

out quite small and then increases little by little through these special

values a (Figure 3).

I

U~h I

I!

IiI

koh wh 2rh 3irh 41rh
b b b b

Figure 3 - Critical Frequencies for Wavemaker in a Channel

When a is quite small, k 0 h < Th/b and M - 0. After the local dis-

turbance has died out, there is then a single two-dimensional progresaive

wave propagating down the channel:

C sinh k h cos (k - at)0 0h h o 0 a

However, as a approaches 01 from below, k h -ith/b and the coefficient of

the first exponential term in the second suamation

24



C k 0 sink 0h ex( ( 2 _ k 2] 1xCos2Lz sin at

R 2- k 02] 1/2 0b

grows unboundedly. At the same time the coefficient of x in the exponen-

tial 4% reases, so that the disturbance no longer dies out so quickly.

If a is increased just beyond aO, then M *1 and the first summation

consists of two terms

C sinh 1ih cos (kx -at)

and

C 0 sinhkoh 2 2,1/2 } h
C1  .)]/ cos i[k0 2 2 112x -at co z

The first is, if course, a two-dimensional progressive wave. The second

represents a progressive wave of longer length sloshing from side to side

as it progagaLes. It might be indicated schematically as shown in Figure 4.

If a is close to a1 , its

CREST I

:TROUGH

Figure 4 - Representation of Sloshing Progressive Wave

amplitude will be very large. As a increases, its amplitude will decrease

and approach C1 sinh koh. However, before a increases very much, it will A

approach a2 and another "catastrophe" will occur. After passing a2, a

thiri t'L. of progressive wave modulated by cos (2n/b)z will be added to

the firaut wo (S. Figure 5).

25
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Figure 5 - Representation of Third Type of Progressive Wave

It is evident that every time a passes thi:ough a value a , there is

an associated crisis during which a new progressive wave is added, begin-

ning with a very large amplitude. These frequencies are sometimes called A

"cutoff frequencies." One should note that even though the wavemaker is

carrying out a three-dimensional motion, the resulting progressive wave i
will be two-dimensional if a is small enough, i.e., a < a1. On the other

hand, if the motion of the wavemaker is exactly two-dimensional, so that

F(y, z) - F(y), then C - 0 for m > 1 and also aim 0 for m > 1. Thus, A
m _ A

none of these crises occurs. However, if the supposed two-dimensional A
wavemaker is only a little out of true, one may anticipate the catastrophic

behavior described above.

One may argue legitimately, that the linearized theory is no longer

a valid approximation In the neighborhood of these cutoff frequencies.

Howe"'er, the behavior described above does occur and is well known. It is

not the same as a similar phenomenon known as "cross-waves," recently

studied by Garrett (1970), Mahony (1972), and others (Garrett gives a his-

tory of this phenomenon). Cross-waves are a nonlinear phenomenon. I am

not sure who first solved the problem we have just examined. It is included

in the Biesel and Suquet's (1951) encyclopedic article on wavemakers, and

certain aspects have been studied in more detail by Kravtchenko (1954).

However, it is accessible to anyone familiar with the methods of classical

mathematical physics.

26
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One question may remain. Since we have not found a solution for the

cutoff frequencies ai, what should be done about them? These are like the

rescnance frequencies in forced motion of a harmonic oscillator. One must

reformulate the problem as an initial-value problem. Then one may artici-

pate that the solution for these frequencies will grow without bound as

WAVEMAKER IN A WALL

As an example of the use of Fourier integrals and of the representa-

tion theorem (2.22), (2.23), we have chosen a problem similar to the one

Just discussed. The chief difference is that the bottom and side walls

are removed so that the only boundary is the wall at x - 0. The fluid is

in the region x > 0, y < 0. The wall itself is flexible and moves accord-

ing to the equation

x - F(y,z) sin at (2.39)

where we assume that

0

Jdy Jdz IF(yz)l <@0 (2.40)

As before, we assume that the motion has become harmonic in time.

The mathematical formulation is similar to that of the wavemaker in a

channel. We take 4 in the form (1.12) and the free-surface condition in

the form (1.13). The first two conditions of (2.30) are abandoned and the

third replaced by

lim * (xyZ) = 0 (2.41)
y-

27



The boundary condition (2.31) still holds. In addition, here, as before,

we need an explicit condition stating that the waves propagate away from

the wavemaker.

We must now make a selection of the solutions (2.21), (2.25)-(2.28).

The exponential solutions in z must be discarded because they become un-

bounded on one side or the other. The decreasing exponentials in x are

allowable. The most general solution for * that satisfies these conditions

is the following:

*(xy,:)rnfdq cos [(V2 q2)/2x [Ao(q) cos qz + B,(q) sin qzj

04

1/2 V/

si Uv dep[(q2 X I2lx [C0(q) cos qz + D 0(q) sin qz ] e•

dk dq exp [+(q v2)x] [ C(k,q) cos qz + D(kq) sin qz] e

x [k cos kz + V sin ky] (2.42)

Here, * can be either *l or *2 We can confirm iimediately that (2.41) is

satisfied if the integrals exist. For the single integrals, this follows

from the form of the factor e\. For the double integral, this follows

from the Riemann-Lebesque Lemma.

Let us now compute

28
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*x(Oyz) . dq(v 2 - q2 )1/2 [Co(q) con qa + Do(q) sin qa] •ey
€II

_J" dq(q 2 - 2) 1 2 [Co(q) con qX + Do(q) sin qz] eay

0IV

f dkf dq(q 2 + k2 ) 1 / 2 [C(kq) coo qa + D(k,q) sin qz)

x (k coo ky + V sin ky) (2.43)

"We should like to invert this to obtain C0IDoC, and D In terms of *x. To
xIdo this we shall need both the ordinary Fourier transform as well as (2.23).

We recall that the former may be written as follows: If

f(a) - dq [A(q) cos qz + b(q) sin qz] Re dq(f + ib) •"iqz

£0 0

then

a+ib f dz f(z) e

We apply (2.23) first and treat z as a fixed parameter. Then

29
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O0

bo(ut) " "-jdq jv2 - q2 il/2 [Co(q) cosn qzt + D0 (q) sin q3:]

.0

2v j *x(O'Y's) e'y dy

and

b(ks) = J dq(q 2 + k2 ) 11 2 [C(k.q) coo qz + D(kq) sin qz]

2 k co ky + V sin ky
w *(0) 2iO 2  dy• .. m k2 + ,V

The ordinary Fourier inversion integral now gives

0 +q

2 0 dyfdz f x(O.yz)evyeaIv2  q2 il/ 2  Co(q) + iD0 (q)] m- d-

(2.45)

and
0

2 ý21/22 J'd J_ (k + q2) [C(kq) + iD(k,q)J f dyf dz x(O,yz)

k cos ky + V sin ky iqZ
k 2 +,2

The coefficients Ao(q) and Bo(q) have not yet been determined for

either 4)1 or *2" For f2' since *2x(O'yz) 0 0, all the C's and D's are

zero and *2 takes the form

31

i! ~~30 t ._

L .



2(xY,) "f dq coo 2 - q5 12) 2 x) [A 02 cos qx + 02 sin qal *VY

If we consider only the part of Cos i 2 n at involving the first
integral, we find

Jd COS[(2 2~ 1/20 q coo (V q x (A0 1 cos qx + B sin qa] coo at

2 2 1/2
- sin [(v - q )/x] [C0 1 cos q + Do sin q:] cog at

+ Cos [(V- q x [A0 2 co qz + B0 2 sin q%) sin at evy

In order that this should represent an outgoing wave, we must set

"ol B 0, A020 - B02 + Doi 0rii
This gives for this integral

2 2 1/2S-j0 dq sin R(v - q )2x a at] [C0 1 Cos qi + Do, sin qi] e')

Z.1 2 21/2
fdq C s (in 2 -()V+ at _ - i1 sin [( 2 - q 2 1/201q x Cat sin [(V qq

-q t o (2 q2)1/2 2 2 1/2
-qz - t - D cos [(2 - 2/x + qz - at] + Do, sin [(v - q2)1x

- qz at] JeVY (2.46)
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The functicns C0 1 , D0 1, C, and D are, of course, known from (2.45) with

x replaced by aF(y,z).
X

The solution has no especially interesting properties like those occur-

ring in the channel. This fact is associated not with the infinite depth

but with the infinite width. The cutoff frequencies would also have occurred

here if there had been walls at z - 0 and z - b. In this case the solution

would have been a bit different in that we would have used Fourier series in

the z-direction rather than the Fourier integral.

Let us compute the average rate at which work is being done by the

wavemaker. According to the linear approximation, the instantaneous rate

is

W(t) - dy dz p(~~)u(0~y,z) Jp d dz 4' (O,y,z,t) 4'(Opytzlt)

- - PffdYdz [1x cos ot + *2x iin at] a [-*i sin at + *2 cos at]

-" pa ffdydz [ax2 cos at - *2x'l sin2 at

+ •2x2l+ sin at cos at]

2 dyd y cos2 at- O sin at cos at]

where we have made use of the boundary conditions for *lx and 2x when x - 0.

Tf we wish to find only the average rate, we must still integrate with re-

spect to t over one period 2w/a. This yields

-W -~Pa2 dydz F''~z *(Ovyz)W -

m+ a 2f dydz F(y,z) dq [C cos qz + D sin qz] e
'2Pa f 01 01 q]~'

" + a 2f dydz F(y,z) dq [COl + 0do] e-iqz e %.

32
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:] . Using (2.45) with *lx(O,y~z) - oF(y~z), we find

No -•eiqz
-1 dyd C y ie y 2v Vn Wq•

2 3 dydz F(yz) dq 2 2 !/2 dnd; F(n,r)

p -2 d y dz dn d1 F(y,z) F(q,ý) dq Cos q (z ev(y+n)
_l ____ ____2 q )1/

P dy dz df dý F(y,z) F(q,ý) eV(y+) J0 [v(z -

(2.47)

This formula is somewhat analogous to the Michell integral for the resis-

tance of a thin ship. Indeed, the latter problem is a kind of steady-state

analog in which one considers the flow past a small (z "thin") bump in a

wall. In fact, Michell derived this wave-resistance formula by a Fourier-

integral method very similar to that just used; it is described in Wehausen

(1973, pp. 143-148).

The problem discussed above was first solved by lavelock (1929). As

he pointed out, (2.22) or (2.23) can be used together with any other coor-

dinate system in which one can separate the function X(x,z) of (2.21). He

applies the method to the waves generated by the oscillation of a vertical

t circular post, but he considers only the simplest case when there is no

dependence upon the angles. An oscillation with angular dependence would

lead to situations of the sort encountered with the wavemaker in a channel.

- The problem we have considered is essentially a simple one. However,

the method can be and has been applied to more complicated situations. For

example, Ursell (1947) has used it to investigate diffraction of water waves

from an obstacle in the form of a vertical plate of finite length, treating1 it as a two-dimensional problem with normal incidence on the plate. Evans

33
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and Morris (1972) have extended the treatment to oblique incidence. Such

problems require finding a solution on each side of the plate and then

matching them at the interface below the plate. In addition, one must take

into account conditions at the edge of the plate. A method that can be

used to solve a diffraction problem can also be used to solve a related

forced-motion problem.

34I
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PART 3: THE REDUCTION METHOD

The essence of this method is to consider at first the function
0t + gy instead of .0 itself. This function is also a solution of the
tt Y

Laplace equation and vanishes on the surface y - 0. Let us define

H(xyzt). - + gy (3.1)
t.t y

We extend the region of definition of H from those parts of the lower hai.f-

space y < 0 occupied by fluid to their mirror images in y > 0 by the equation

H(x.-y.z,) - ~t) (3.2) ,A

Since H(x,-O,z,t) - 0, it follows immediately that not only is H continuouz

on y - 0 but also H, H, H and H . However, it also follows from the: Z9xx, zz

definition that H (x,-0,z,t) = F (x,+O,z,t) so that H is also continuous.

Furthermore, since H y -H- , it follows that also H is continuous.
yy xx zzyy

Hence, H has been extended as a harmonic function into the upper half-

space. If the rest of the boundary conditions can be carried over to H and

do not complicate the problem, the solution for H may turn out to be easier

than that for 0. Of course, after finding H, we are still confronted with

the problem of finding 0, which may not be easy.

Although the method is presented above it. a three-dimensional formula-

tion, it has found its greatest use in two-dimensional problems where the

powerfulmethods of analytic-furction theory may be applied. We make a

small digression to review some of the basic facts concerning irrotational,

two-dimensional flow of an incompressible fluid.
i ~The equations expressing conservation of mass and irrotationality

ux + vy O, u - v 0 (3.3)
x y

are just the Cauchy-Riemann equations for u and -v, and consequently
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w u -iV is an analytic function of z x + iy. Furthermore, the first

equation in (3.3) implies that there exists a stream function V(x,y,t) with

S- -V, V - u. But then 0 and T also satisfy the Cauchy-Riemann equationsxy

and

F(zt) - *(x,y,t) + if(x,y,t) (3.4)

is also an analytic function. It is easy to see that

JI
F' (z,t) w (3.5)

We shall call F the complex potential and w the complex velocity.

Let us now consider the combination

V!••:H (z) =F t + igF' tt+ iTt + ig((D i(y,

4 8tt + g$y + i(Ttt + g&y) (3.6)

It follows from the free-surface condition that

Re H(x + i0) - 0 (3.7)

But then H(z) can be extended as an analytic function from the domain

y C0 to the domain y >0 by the Schwarz reflection principle:

H(x - iy) = - H(x + iy) (3.8)

This of course, is the analogue of (3.2) and as in the three-dimensional

case, we hope to be able to exploit this extension to the whole plane to I
find an easier solution for H.
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I
The method has been used by so many persons that I shall not try to

sketch its history except to say that I believe it was first used in water-

wave problems by Levi-Civita. It has been extensively exploited by various

Russian hydrodynamicists but also by others in the United States and else-

where. To illustrate the method, we shall use diffraction from a vertical

plate immersed into the water to a depth Z. This problem was treated in

this way by Haskind (1948). It can be treated equally well by the method

of Fourier integrals, and in fact this was done by Ursell (1947). The

method has recently been applied by Evans (1970) to the problem of diffrac-

tion about a completely submerged flat plate. It is almost obvious that if

the diffraction problem can be solved by this method, then the problem of

the waves generated by small oscillations of the plate can also be solved.

This is also included in the cited paper by Evans. Later on we shall come

back to the reduction method when we treat the method of multipole
expansions.

DIFFRACTION OF WAVES ON A VERTICAL PLATE

We suppose that a flat plate is immersed to a depth I iu an infinitely

L deep fluid and is subjected to oncoming waves. Some part of these will be

reflected and some part transmitted, as indicated schematically in Figure 6.

In the neighborhood of the plate there will be a local disturbance that we

have not tried to represent.

Figure 6 - Flat Plate in Oncoming Waves
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I
The incident wave will be represented by

Y, A cos (kx + at), a gk (3.9)

with velocity potential

M• A ekY sin (kx +at)

MA eky sin kx cos at- aA eky cos kx sin at
aa

"- cos at + sin at (3.10)

The associated complex potential of (3.4) is easily verified to be

F(z) - -i e- Cos at -A e- sin at (3.11)

" fc cos at + f sin at

We shall denote the diffracted wave by 0D so that the velocity poten-

tial for the total motion it;

S+ D Ccos at + sin at

-(IC + DC) Cos Ot + (0 Is + 0DS) sin at (3.12)

Analogously, the complex potential is

F -F + FD f cos at + fs sin at

I D C S

" (fIC + fD) Cos at + (fie + f sin at (3.13)

38
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The following boundary conditions must be satisfied on the flat plate:

0x (O,yt) 0. or ¢cx(Oy) - ¢sx(O,y) 0 0, 0 > y >-Z (3.14)

On the free surface, (1.11) must be satisfied by 0 and D and hence (1.13)Dj
by *C. ýS. *DC' and *DS" In complex form these are the following:

On the plate:

R f'(O + iy) = Re f'(O + iy) = 0, 0 > y >-I (3.15)

or in terms of FD,

DI

Re j O eky + f;(O + iy) = Re f;s(O + iy) - 0 (3.16)

On the free surface:

Im (f' + ikf(x + iO)} = 0 (3.17)

4
where f is any one of f . f a DC' f

In addition, 0D must represent outgoing waves at a distance from the

plate. In complex notation this may be expressed as follows:

li, (f-kf )0, li kf( 0 (3.18)
DS -,DS DC

t It is also necessary to specify the behavior of the flow near the
sharp edge at (0, -L.) for there will be a singularity at this point. In

order to limit the. power of this singularity, we shall suppose that
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Iz + itil 2 If'(z)I < H near z - -i

or in other words that

(z + it) f'(z) (3.19)

is regular at the point - it. This restriction is in conformity with

experience at similar cusps in hydrodynamics.

Finally we impose some further conditions at infinity.

If'(z)I < B if I Z1 > t 1 1, y < 0 (3.20)

and

lim f'(z) V 0 (3.21)

Uatil we reach the point where we must deal with the radiation condi-

tion, we may safely omit the indices c and s for the calculations are the

same for each.

Let us now introduce the auxiliary function

G(z) - f'(z) 4 ikf(z) (3.22)

which according to (3.17) satisfies the condition

Im G(x + io) - 0 (3.23)
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By the Schwarz reflection principle, we extend G analytically into the

upper half-plane:

G(x + iy) - G(x - iy) (3.24)

or

*x(xy) - k'(xy) - (x,-y) - kf(x,-y)

and -•y(Xy) + ko(xy) - y(x,-y) - ký(x,-y)
y y

t
We have assumed in (3.20) that Ijf' < B if jzj _> t + 1, y < 0. Let

examine what this may imply for IGI. Let a be some point of the region
A(see Figure 7).

Figure 7 - Path of Integration

Then

f(z) -J f'(&)dz + f(a)
a

and consequently

tf(z)I < I f'(z)dzl + If(a)I
a

< 3 Iz - &I + If(a)I < B j1 + A
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alut then

G (x) C 1 I + D, C, D > 0 (3.25)

an inequality that holds in the vhole region Iz > I + 1, not just in the

lover half-plane.

Near the point a - - it, we have assumed (3.19). Define

H(M) (:2 + t2)1/2 f'(z)

Then

z f 2 2 1/ fi
.' (s) + (z +

(2 + 12 2)1/2

or

2 + 2 ) 2 t(S) =(s2 + 92)1/2 f, + (Z2 + 9.2)3/2 f,,

Consequently

2 + 3/2 -'(z) (z2 + f2)3/2 V + + X2)3/2 ft

(Z + x (a(z) z M(z) + (k(z) + I (z)

N(z)

Thus (z + z2)3/2 G'(:) is analytic at the point x = -it and then also

through the reflection at x - it.

i4
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Since (a2 + I 2 ) 31 2 G'(s) is analytic at a - + it, it follows that

(2 + t 2)1/2 G(s) Is also analytic at a - + it. To see this, one may start
with GI (s) and calculate

I G(z) - G(a) f (C2 + I 2 1 2 N(C;) dC

a

Sz z

1 3 N(x)j N'(C) dC""2 2" 2)1/2 1~)-•• .)/2

t2 (z, a a (2 +

or

2 2 1/ 2 21/2 1 aaILNa(a + G(z) (z+ 2)I G(a) - (a 2 + 2 ) 1 +2 Nz '
2 22)2/2/2

I-L(z2 + (2) 1/2  J2 ()d

It remains to be shown that the last integral is bounded near z -- t.

This is uot difficult, and we shall omit the proof here.

Let us now develop G(z) in a Laurent series. Because of (3.25), the
t series will take the form

I + a, + a2 ....

0~z c al> + 1 (3.26)

The condition (3.23) Implies that c and all the a must be real. Now
1 n

2 3ze a
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It follows easily from lim fV , 0 that lim f" - 0 and hence that
y4-• y.4-W

lis G'(s) -0 (3.27)
y .

But then in (3.26), the constant c - 0.

Let us now take a circle C with center a - 0 and radius greater than

Z + 1 (see Figure 8). Hence the Laurent series im valid on and outside the

CI

Figure 8 - Region for Laurent Series

circle and the Cauchy theorem yields

. (l ) dG - 21ria

Since G is, in fact, analytic everywhere outside the flat plate, the inte-

gral along C can be deformed onto the two sides of the plate with little

circles of radius e around the ends, where G may have square-root singu-

larities according to what we have shown above. Hence

2ta1 - G(+0 + ir•) idrj + f G(-0 + iTn) idy
-X.-C+ 1-C

A
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1/2V _
+ G(-it + ) ceC ide

-3 U/2

I .~3Vr/2

G(it + cei) eidj

"- e~si•) £- /27,LO -1/2w

Since (+.it + ~)v o the contributions from the small circles

vanish as E0. We have from the definition of G

I-E
S•-€ +0

-21ria [x k 1 i(0y k4))- I idnl
k'' - 0

I-E

-f [y kf d

We have been able to set Ox 0 from (3,14). Since the plate must be a
streamline, it follows that Y(+O,n) - T(-O,rl) - C and hence that the inte-

gral of I vanishes. Since the left side is purely imaginary and the right

side is real, we can conclude at once that both must be,zero. However, we

can also show that the right side is zero by invoking the antisymmetry

property in (3.24). In any case we have shown that a1 0.

Evidently

2a 2  3a 3
G'(z) , 3 #4 .-.. if azj _> 9 + 1 (3.28)

z 3

But then the function (z2 + I2)3/2 G'(z) is bounded in the region jIz > t + I.

We have also seen that it is analytic at z + it and hence also in the

region Izi < k + 1 except possibly at z - 0, where there is a confluence
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of boundaries with different boundary conditions. We could alluw a singu-

larity at z - 0 in order to represent a loss of energy in breaking of waves

on the barrier. The theory would not tell us how strong to make the singu-
larity but it would serve as a mathematical model for an energy absorber,.i

WP shall not do this, however, but instead assume that there is no loss of

energy. Consequently, (z 2 + L2)3/2 G'(z) is bounded in the whole complex

plane and hence, by the Liouville theorem, must be a constant:

G'(z) = 2 + C , c real (3.29)

(z 2 Z2 )3/2

Integrating once, we obtainri

G(z) -- 2z2 + 2)I2 + d, d real (3.30) A
£(z + )

i

2 2 1/2
Up to now we have avoided specifying what we mean by (z + L2)1. We

choose the branch that behaves like z at large distances from the origin.

Then on thR right side of the flat plate, (z + k ) takes the value

( y2)/2and on the left side -(t _ y21/2

There will be no loss of generality if the constant a in (3.26) is[ chosen to be zero for this can be accomplished by adding a suitable con-H stant to f itself and has no effect upon the motion. With a a 0, we see0 -A
from (3.26) that G(z) behaves like z as z * •. This behavior can be

obtained in (3.30) by setting d -c/Z2.
Hence

G(z) ' C [12 +z - lJ, c real (3.31)

This completes the first step in the reduction method, the finding of G.

We must now proceed to find f.

IS
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Since

G V + ikf a ikz d r iktz ff Cl
dz

we may imediately integrate the differen, lal equation for f and obtain

E ( +f(z) [2)/2 - 1 dI

In order to be specific about the constant of integration, we shall start

the integral at z = + io- and integrate along a path that lies on the right

of the flat plate, as shown in Figure 9. However, in order not to lose

100

Figure 9 - Path of Integration for Equation (3.32)

generality, we must now add a constant, i.e.,

Sfs)= .•kz fi A4•lli~• -k

f(z) c e 1 +.)2 d + B 1 (3.32)
J+

4.7



In order to determine the constant B, we shall use condition (3.15).

For this purpose we must calculate

f '(z) - -i~:lk [oo -÷ 2) ij2 e1 kcd¢
ikzff1 (Z) Ii''-ed

+" .... ....... -t 2I, ~ -ktdl:

+ C ik~

z

: -ikek ,t~e- -,,, Cd (313

(z +) jO( + )I

______(__ _ nzL! iki

Then, if we choose a value of y on the right side of the plate, we obtainI

, e -kn-y "y -" ,2)t ky f

E'(+0+ 1y)w ikBeY+ C f 2 21/

iy
ky t-k

2kCe -- T d( d

+ k~e~a~ + - ~ -d

Ni
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If we write B - 1 + iB2, then

Re f'(+O + iy) - a -ky kCekY (n2 2)112 d-- 0

(1,2

The integral is a known one, namely,

_J /2) dn - Z Kl(ki)Iii;i!
(n (2 x- 1/)2

where K1 is a modified Bessel function in Watson notation.* But then
B 2 =C X KLl(ki) and we have

f(z) Ce-ikz e1] e d + [B + iC9Kl()] e-ikzf 2 12 + T1+i_2~k'

(3.34)

IIf

where C is real (see (3.31)). This function now satisfies the free-surface

condition (3.17), the condition on the plate (3.15), the sharp-coi-ner con-

dition (3.19), and the conditions at infinity (3.20) and (3.21). We must

now bring into the picture the separate functions fDC and fDS' the condi-

tions (3.16), and the radiation condition (3.18). However, befora we do

this, it will be useful to have the asymptotic behavior of f(z) as x ÷ + •.

~A

See G.N. Watson, "A Treatike on the Theory of Bessel Functions,"
Second Edition, Cambridge, at the University Press (1944).
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For this purposQ we deform the path of integration as shown in I
Figure 10.

IR

Figure i0 - Deformed Path of Integration

If we let R i- n the In-tegral along the quarter-circle, it is not dif- {]

ficult to show that the contribution from this part converges to zero.*

This then gives us I

z

[2+•2)1/2 ] eik~d . J [2'+ t 2 ) 1 /2 - e727

where the path of integration in the second integral must go under the

plate. If we now let x ÷ + a, it is evident that this integral must con-

verge to zero if it is to exist as at. imptoper integral. which it docs.

Hence

-ikzf(z) ~ [B1 + iCyKi(kk)] e as x ÷ (3.35)

A. x ÷ - ', we shall have

-50
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f (Z) -[B + iCXK -ik: e C i e f 2 /e+

where the path of integration is below the plate as shown in Figure 11.

?I

Figure 11 - Path of Integration Below the Plate

We shall complete the path of integration by adding a large semicircle

in the upper half-plane, as shown in Figure 12. Again, it is easy to show

that as R-• •, the contribution- from the integral along the semicircle

)A

-R R

Figure 12 - Completion of Path of Integration

vanishes. Hence, addixig it to the original integral has not changed its

value. To be moxe precise, what we have shown is that
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S -R C R

where CR is the semicircle of radius R. Since the integrand is an analytic

function, we may deform the integral right onto the extended fslt plate (see

Figure 13). Just as in the earlier reasoning concerning G, the contributions

iI

Figure 13 - Path of Integration Around Extended Flat Plate

from the little circles at the ends go to zero as their radii go to zero,

and we are left with

j [•2 + &2)1/2 e [E _ 2 )l/2 - 1 e-knidf

+ in -kfl ne_

2 Y 2i/2 1 e idn - -22 /2 df k - 27Il 1 (kt)

Here again I1 is a modified Bessel function of well known characteristics.

Finally, then, we have

f(z) [ [B1 + iCKl(k W) - 2rCl(k9.)] e-ikz as x G -o (3.36)
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We are now ready to invoke the radiation condition. From now on, the

function f and the constants B1 and C will all carry additional indices

c or s. If we refer to (3.11) and (3.13), we see thac

(z) j ~ *ikz+

and

f - e-ikz + fDS

Consequently, if we apply (3.35) and (3.36) to f and f5,

we find

f() [i M + Cj+ iCcRlI -2Cz

[• ] -,,. as x +c
-ik

tf W Ilk- + Bl + tic K1 - esI

DSls 8f fS

(see (3.8))3.3ve

~~~1 ikz

f[- ) [W i ,+ B + iC + U • I e . .

fDS(Z) + B- cA 27rC 8 ] Jame
+S[ B18  iCi 1  a-ikz

Then the equation

lim (ft + kf 0

-I I (see (3.18)) gives

-A [i ~+ Bl +iC LK] + k [ 4 + B 5 + ic8 L 1 U -

and the equation
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lin (fo- kfDs) - 0

gives

il [ BC C -K 2irCZ11  -~ k jA+I5+ ic*L11K- 21C LI,] 0

Separating real and imaginary parts, we find the following set of four

equations for the unknown constants Blc' BIs' Clc, CI:n

-B + 2%Ic - K.c* -o"i i j

-LK1  -
•' ~~~~-BoK 2le•

111 +£ ZC + 2=lC; 0

Iss - ZIC8

B + LK Cis

The solution of these equations yields

K (kt) WI (Ut)

c K 2 1 2 2  ait K 22 at•!J+c K1
2  + W2 1 2  

Bi a K12÷ 21 1 2 ci

2

A _ _ W +Substituting into the amyptotic expressions (3.37), we fa(nd

2 ,2'j] a-i



W~F 2,12 lrI Ku 1 *ik5ax 4 @I. , - .Kf 2 + i2 212 , as x +

ThesumsfTC = fl) + fic and fTS = IDS + fie give the two parts of the

transmitted wave when x < 0. The asymptotic expressions are as follc•,tq:

r + W21 2 K2 + 7T 2 1 2

2~ 22

+ eas x

C 2L --2 2 22

1+ W + 7r J (3.39)

Let us use the results shown to compute 0D as x -• + 0, the velocity

potential of the reflected wave, and *T - @ + D as x - -% that of the

transmitted wave:

, 2+ r1, [-7TIi 1 Kcos k• w1I 1 2 sin ki] cos at

+ (- 2112 cos kx -7rI 1 sin kxJ sin at (3.40)

22 2K

1 K 1 +ik
2 i-2

f e as X 4
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A&*ky [1K o2K 1
2

T 2 L~ 2  coo1 (kx + at) 2 2 2 sin (kx +at)

as x . -

(3.41)

The associated expressions fcr the free surface are

W 2 2 w lI K J i ~ x ~ ) ~ o

~A [ -2 l -2 I cos (kx -at) + 2sin (kx t +

and (3.42)

T A [2 22 cos (kxx+o) + K12 +2112 sin (kx + at , x-.

It is customary to introduce a reflection coefficient R - (Amplitude

of YD)/(Amplitude of Y1 ) and a transmission coefficient T - (Amplitude of

Ywe)i(Anpltude of Y Since here (see (3.9)) the amplitude of Y m A,
we find -

11 1•(kid) 11 (1•)
Rm 2 22/ T-KO) (3.43)12 +21 1 2) , (K1

2  2 211/2

(K + ir I )K +Ir I)

The equation R 2 + T2 - 1 is simply an expression of the conservation of

energy. If we had allowed a singularity at a - 0 to represent wave break-

in6, this equation would no longer hold.

We defiae the phase shifts by comparing the actual reflected wave with

the completely reflected wave A cos (kx - at) and the teansuitted wave with

the incident wave A coo (kx + at):
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Y ¼ AL coo (ka - Ot - 3 . +
Y YT - AT coo (k: +- at - OT) 9 z''

We easily fin~d

1 T

OR.+ T 2 (3.45)

• The functions K1 and 1. are well tabulated, so that there in no dif-

Sificulty in plotting Rt, T, and BRas functions of k~t. The graph& look

Sepproximetely as shown in Fig~ure 14. Tt: is evident that If X <<1, theJ

f reflection isI I
WI

F igure 14 R i, T and as• F=unctions of k1t

S57
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almost complete whereas if A >> L, the transmission is almost couplete,

results that accord with our intuition. However, comparison with siperi-

metal measurements does not show very good agraement. Part of the reason

for this is probably neglect of the vortices that are formed by the flow

back and forth around the sharp edge at the bottom of the plate. Their

formation is not taken into account in the formulation of the problem.I We have been discussing only the asymptotic behavior of the solution

when x - + -. However, as soon as we have found Ale, BIs' Cc, and Ca, we

may substitute into (3.34) and have the complete solution for fs(z) and

f (a). With these functions, we can then construct the solutioa f -4 + D
for the whole region y 0 0. In particular, we can find the pressure on the

two sides of the plate and calculate the force and moment about 0 acting on

the plate. We shall not do this to avoid getting boaged down in treating

just one problem. However, this has been done by Haskind (1948); a brief

discussion of the results is given in Wehausen and Laitone (1960, pp. 532-

533).
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PART 4: THE METHOD OF GREEN FUNCTIONS

Of the several methods that we are discussing here, the method of

Green functions is certainly the most flexible in application, allowing

treatment of a much wider class of problems than the other methods.

However, even though it has been known for a long time and has given rise

to many mathematical investigations, it did not really become important in

the solution of engineering problems until perhaps the last ten years. The

reason for this is that a "solution" by this method typically involved the
solution of an integral equation. Although one could show in many cases

that a solution to the integral equation existed, an analytic solution was

usually not obtainable and a numerical solution was too difficult. The ad-

vent of high-speed computers has radically changed the situation with

respect to numerical solutions, and nowadays this is almost routine.

The above remarks should not be interpreted as meaning that one cannot

obtain an explicit solution by using Green functions. However, in those

situationr where one can do this one can, as far as I am aware, also solve

the problems by another method. For example, Havelock derived the Michell

integral by usiag a Green function. However, Michell himself dezived it

from Fourier analysis, having first derived a riapr.sentation theoroe

analogous to (2.22).

We shall approach this method by way of some Green identities, which,

in turn, are directly derivable from the Gauss divergence theorem. Let

and * be any two functions defined in a certain tree-dimensional region V
and having second derivatives there, including t7#Vboundary S. Then one of

the Green identities states the following: "

fv ~~dVf dJV On~-A~, V- i~ i dS (4.1)

where the normal vector points out of the region V. If in addition both

and , satisfy the Laplace equation, the left-hand side vanishes and

J [•n - ' dS 0 (4.2)
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' " S r- Cfl,"Vt'<r,'v: "-. rsr .,• -, ,

A particalar solution of the Laplace equation in three dimensions, in

either P- (x,yz) or Q- (•,r 1 ,t), is

1/2
r [(x-0)2 + (-ri) 2 + (-0)21 (4.3)

r

The only exception is at the point P - Q, where the solution is singular.

Let us take Q as the integration variable. We must then exclude a small

region containing P from the integration. Let this be a sphere V• of radius

C with surface Sg. Then (4.1) takes the form

6A -A dV j IjdS(Q)

r + j n•- rr- 2 dQ n

Since the left-hand side vanishes identically and since the integral over

S converges to -4 1T c(P) as E 4 0, we find anotherc identity:

i O(P) 0 @vr (Q) " dS (4.4)

fS

Here we have written V instead of n in order to make clear that the normal

derivative is taken in the variables (•,Ht).

If the point P is taken on the surface S at a point where the surface

is smooth, we may show that (4.4) still holds if 47r is replaced by 2n.

We may now generalize (4.4) further by exploiting (4.2). If we add to

1/r any harmonic function j (i.e., one satisfying the Laplace equation and

having no singularities in V), (4.4) will still hold. We shall choose a
special kind of function to add to i/r. Let H(x,y,z,•.Tlr) be haj•onic in( each set of variables (x,y,z) snd ( We define
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C(P)- (PQ) (4.)

It then follows from (4.4) and (4.2) that

O *(P) - [%(Q)G(P,Q) - GdS(Q) (4.6)

S1 As before, if the point P is taken on S, the 40 is replaced by 27r.

T-, ;. We have been considering only three-dimensional motion. However, there

Iare corresponding theorems if the motion is two dimensional. In this case

(4.5) is replaced by I

G(P,Q) = log + H(P,Q) (4.7)
r

1/2
where P = (x,y), Q = (•,n) and r = [(x-0) + (y-n) I Formula (4.6)

becomes

=1(P) fTIT -G ds (4.8)

C

Ii •where C is a contour bounding a two-dimensional region S and ds is arc

length. if P is on C at a point where C is smooth, then the 2n is replaced

by IT.

Ll Let us now turn to several problems where we can exploit (4.6) or (4.8).

FORCED HARMONIC MOTION

V: Let us suppose that a body is being forced to undergo periodic motion

of frequency a and in such a way that there is no average displacement.

We shall denote the average position by So. Let the Oy-axis pass through

c.tt(or near) the body and let E be a cylinder of radius R, large enough to
!•i ~contain the body. We further denot~e the portion• of the free surfsace F ',
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A'% r o• • i . .. A " 9 W W , qn .fl • .¶ t W" - A. . . .. ' W$, 1 W ' t./ ,, rl n F D

:• inside E by Fa nd the portion -of the bottom A inside by. (sea

F F.

i.7

Figure 15 - Representation of the Problem of Forced Harmonic Mction

If we write

. *(x,y,z~t) = * 1 (x,y,z) cos at + s2 in at =Re -iat (4.9)

Swhere 2 I + i2' then from (1.13), the free-surface boundary coidition

Ii 2
y*(x,0,z-) \v , v a /g (4.10)1

The condition on the bottom is

* tn.J 0o (4.11)

_ and the condition on S is

0 is v (4.12)

Since this is still in terms of 0 rather than *, let us decompose V
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v (x~yzt) 1 c8 Ot + V sin ct
;. I 4.13)

L ot-ReVnxyz) "e

where V (x,yS) Vn1 + iVn2 . Usually the fact that tie body displacements

are small is exploited further and we can vritte

"Vnlx'y'z't) 1 *1(t) 1 n + + 'i 03

(4.14)

+ &(rxn)1 + 13(rxn) 2 + (rn)

Here (x 1(t),y ,z) describe the translati-n diiplacereots,

(c(t),B,Y) describe the anSular displacements of the body, and r is a

vector from the origin to a pcint (x.yz) on the body surface So. If

we define

1 " a'3 " I

• (4.151

04 Ox - Ty, a(5  YX 'it- , 16 = 8-

we say write (4.14) in the form
,6

Vn(xy~z5t) - T k(t) rk(x,yz) "4.16)

kumI

Nw L(t) itself can be written as

ak(t) Cik' cos cit + " •in at - Re (4-.17)

where a = Ik + ik" (Whether i is a funcLion of t or a complex 3mpli-

tude should be clear from context.) Next 0 is decomposed as follows:

(k) k)
(!'(xy~z~t 1 * (x,y,z) + croclk(t) 02)xz) (.8

k

63



The, boundary condition (4.12). now gives

IS O (k) 1  0 (4.19)i Pn " k' 2n. SO0

If we wish to divide 0 into site and cosine components, we may write it as

follows: t+ 7 r r'(k,,,()]

9 - (k) (k)i 0  (k)C + (k)e ama
k k

so that in the 'ctation of (4.9)

9€ , ,aoci" *1(k) + o. 2(k)]
T~ Ck 1 J''ý

S(4.20)

¢'2 ,'a([ 01(k) + ( 2 *(k))

To justify the decomposition (4.18), we should demoustrate that the

problem has a unique solution. It is possible to do this after we add one

more condition, the radiation condition. In the two examples treated by

the Fourier method, we satisfied this by manipulating some undetermined

constante. However, when treating the diffraction about a plate by the

reduction method, we formlated the radiation condition directly in terms

f f DC and fDs (se (3.18)). There is an analogous formulation for the

present case. If, analogously to (4.9), we write (k) - (k) + #

then the radiation condition for *(k) takes the following form:

lie a1/ (k) O# (k) 0,

1 2 - (4.21)02 =e ilkO tanh koh

•sr it = z2 zZ1/2
2 ZLI

where4-(z +j 2 . The radiation condition for # + 1# 2 is the

saie. It is a consequence of (4.21), which we shall not prove here, that
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W(k) = 0(R- 1 1 2 ) as R-*c- (4.22)

i.e., that R/ 2 1( < M < if R > Ro for soum sufficiently large

As far as boundary conditions are concerned, the only difference be-
i~e., hat (ktween * and the ( is in the boundary condition on SO. All of them

satisfy (4.10), (4.11), and (4.21). However, ( satisfies (4.19) whereas

Ssatisfies
is Vn(X.y.z) (4.23)

Much of the following can apply to either one. We shall write out the
development for €. To convert to (k)we need only replace V(xy,z) by

nn
n.k(x,y,z).

Let us now apply (4.6) to the domain bounded by S, FR, BR, and E

We find the following:

4"n'4(P) = (Q) G(P,Q) - *(Q) Gv (P,Q)]dS(Q)

.15oUFRUBRUER

=f [V,,(Q) G(PQ) - O(Q) G (PQ)]dS

So0

+j: [• *(E',O,) G(P;EO,) - 0 G,] d~dC

R (4.24)

+j - O(Q) G (P,Q) dS
BR

f +j [R - OG Rd]drdSRR

where we have used (4.23) in the first integral, (4.10) in the second, and

(4.11) in the third.
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'We now consider several cases.

Case_1. Va begen by writing the last inte(ral of (4.24) as follows:

(f• R1/2 1#R t k0fl R 1/2G R 1/2 [GR- iko(;] R1/2ý •} 4.5

R

In this l~tegral, we know from (4.21) Aid (4.22) that R1/2 iY4] - 0
1/2and that R 2 remains bounded as R - •. Let us now suppose that it is

possible in (4.5) to find a function H such that

G (P;E.0, ) - 0 -

GV(P,Q) - 0 for Q on B (4.26)

1)2 21/2
lim R 12[GC(P;.,n,o) - ik 0GJ 0, R (&2 + 2)2

tR
t Any consequences ve may draw from these properties depend, of course, on

our being able to construct such a function.

It is now immdiately evident that the integrals over FRand BR *re
zero. In the last integral, in the form (4.25), we see that nov

R1/2[GR - ik0G] - 0 and R1 / 2G remains bounded as R . •. Consequently the
integral over X converges to zero as R - m. This leaves us then with only

the integral over SO. If we now let P be a point of S instead of a point
0* 0

in the interior, the 4W is replaced by 2n and we may write the resulting

equation in the following form:

W() + VO J *QG(P,Q)dS(Q) V jfV(Q)G(PQ)dS(Q) (4.27)

SO So• 0 S0

This is an integral equation for the determination of ý(P) for PeS0 . If

this equation has been solved, then (4.24), which takes the form below,

gives 4(P) for any point inside the fluid:
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*(P * ~f[V (Q)G(P,Q) - (Q)G, (P,Q)j dS (4.28)

Once we have found O(P), we can also find other quantities of interest.

For example, the free surface is given by

t)- t(xO,zt) = a Re io(x,O,z)ei (4.29)
g t g

The force acting on the body (i.e., the hydrodynamic part) is given by

F = p n dS p - n dS

0 0

6 P6 f[&k(t)O1(k) Wkt$2k

+ +Cy &](t)2 n(dS
k-l

or, in components

Fi - kfS ,l(k)ndS- Kaf *2 (k) nidS

o 0oS (4.30)

" 6 - k- Xik

where p and X are often respectively called "added masses" and "damping
coefficients." In this case they are functions of the frequency as well as

the body geometry. There are some advantages for further developments in

replacing ni in (4.30) by i ( according to (4.50). However, we shalli in

not explore this further.

Under what conditions can one find a Green function that satisfies

(4.26)? It is possible to construct such a function for either infinite or

constant finite depth by applying either the Fourier method or the

reduction method. The ftnctions can be found in several places, e.g., in
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Wehousan and Lattone (1960), for both two and three dimensions. We shall

later consider the case -heo the bottom is not of constant depth.

The 6e.slopusnt oi a computational method based upon integral

equations has been carried out for two-dimens onal motion by Warner Frank

(1967) of NSEbC and almost siualtaneously by Lebreton (1967),

Cace II. Let us try the very siaple choice

G(PQ) - (4.31)
r

In this case the integrals over FR and 5R will not vanish. Let us

examine the integral over E-R as given in (4.25). We know from (4.21) that
JL/ - Ukofl can be made as small as we wish by taking R large enough.

Can we assert that R1/2 G R//r remains boundad? Let us writp

2 21/2 2 . /1 (x 2 + 2) R 2 1/2 (4.32)

and let a be the angle between the vectors (x,z) and (F,(). Then

r-IR -2RR tose a + (Y ) 21/ (43

Evidently

R1/2 c11/2
-- a..1/ (4.34)r R2 2R1 2 12

+ - C•os,.+

If P is taken near Q, it is evident that the denominator becomes small and
1/2hence that R /v becomes large. Properly we should examine the integral

1/2 f2,

-h 0

We can show, for ixa mple, that .5
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I < i t

where K(p) is the complete elliptic integral. We can undoubtedly do

better than this. In any case, it is not enough, for K(p) - as p ÷ 1.

We shall approach the treatmett of the integral over E smewhat differently.

In discussing the Fourier method, we found solutions of the form

(2.17). If in the solution for x 0 we had introduced polar coordinates

x R coo e , z - R sin e (4.35)

we should have found the following solutions:

n (k0R) cos

x0 x (4.36)

{Y(koR) sin n 1

where n is an integer and J and Y are Bessel functions in the Watson no-
n n

ration. If we consider the region exterior to some bounded body, we find

N that the only contributions for xi are exponentially decreasing in R and

that the part of a solution representing outgoing waves has the following

form:

as~ sual J cosh:ko(y + b)] co:(n + 6) [Jn(koR) + :Ld (4.37)
nj nnn0

wee asuulJ+ = H•1' The combination is usually called
• were as•sul, n +In n"

the Hankel function of the first kind. Its asymptotic expansion for large

SoR is well known, and we may write the asymptotic expression for as

follows :
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1/2.

an -. i (y + h)] coo(ne Olt 6X 12

w0 (4.36)

A mtrsiah~'fo.vNar4 computation yieldx

-1Ft+to +%(kR-/ (4.39)

We now substitute this expression for into the integral over E in

its original tore in (4.24), neglecting th,,, torr of 0{(k R)'} After

some reordering of (4.24), we can write it in the following form:

'i4(P) +r ()G(POds +( (Q [G(P,Qý ld

(4.40)f ~+J COQG (PAdS +J O(Q) [(ik. - d)S -4

fJ Vv,(Q)G(P.Q)dS
So 0

If we now let P approach any boundary. we have the sawe equation with 471

replaced by. 2w. This is tten an~ integral equation f or the detorainationA

of *(P) for P On Sd ljftA. Once it has been dete~rmined, the equation
above determsines 4 at any interior point. W~e should keep in mind that in

deriving PFquation (4.40), an approximation has been made ton tvaluating the

iVtegra1 ovt.. E R.
This method has beeau used for numerical calculattions in both two and

three dimensions by L.W.-C. Veung (1973;, see also Bati and Yeung, 1974). in '
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r comparing this protedure with the earlier ome in which we used a Green

fuaction satisfying (4.26), the following points should be kept in mind:
f 1. The Green function satisfying (4.26) is much more complicated than

(4.31). Howmver this is offset by the fact that # is solved only for P on

S0 . In the Yet8g method one finds $ for P on SoUFRUBRUER, which mans, of

course, a much larger matrix in the discrete version of the integral
S~ equaLion.

T 2. Althomgh in the Yeung method we have required a flat bottom for R largr

enouph, it does not need to be flat in the region near the body. Further-

more, in the two-dimensional version, the flat region can have different

depths on the two sides. This did not seem to be possible with the more

complicared Green function satisfying (4.26). We now turn our attention

to this question.

Case III. We now suppose that our Green function satisfies (4.26) except
that CV-O for Q on B is replaced by

LV

G (P;E, - h,) 0 (4.41)

We have mantioned earlier that it is possible to construct such a Green

tunction. This Green function will now be applied to the situation indi-

cated schematically in Figure 15. However, we shall suppose that the part

of the bottom that is not at depth h is limited to a finite stretch that we

shall denote by B0 (see Figure 16).

fl' 4

I IR

Figure 16 - Limitation on the Part of the Bottom Not at Depth h
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If we now use this Creen function in (4.24) and take the limit R H

we obtain the following equation:I
S4vr(P) mJ [V (Q)G(PQ) *(Q)G I dS

• 0N1(4.42)
Sf - *(Q)G (PQ) eS

B

If we now let P be a point of either S0 or BO, we obtain the following in-

tegral equation:

*(P) + O J(Q)GV(PQ) dS - Vv(Q)G(PQ) dS (4.43)

S uB fSo0 0 0

This is almost exactly the same as the integral equation (4.26) except that

the integral on the left-hand side is now over S uB 0 instead of just SO.

Now by comparing Cases L, II, and III when the bottom is uneven near
the body, we may make the following observation. Case I is not feasible

for we do not know how to construct the Green function. Both Cases II and

III are feasible. Case II has a simple Green function, but we must find
( P) over an extended boundary. Case III has a more complicated Green

function, but we must solve for t(P) over a more restricted boundary.
Some. comparisons of computer times for the case of a completely flat

bottom are given in a paper by BaMi ad Yeung (1974). In the case con-
sidered there, a two-dimensional one, about twice as much time was required

for the Yeung method (Case II) as for the Frank method (Case I).

DIFFRACTION PROBLEMS AND THE HASKIND
RELATIONS

The following remarks are a sort of appendix to Case III discussed
above. With the sami geometry considered there, let us suppose that the
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body in fixed but that there is a known incident wave with velocity po-

tential OV If 9 is tha velocity potential for the total fluid motion,

then the diffracted wave is defined as usual by

A 0 0 1 + 0 D (4.44)

The diffraction potential must, oZ course, satisfy the free-surface con-

Sdition and radiation conditions. In addition, it must satisfy the boundary
S~ condition

D -- 0 on both S and B (4.45)
Dn In0 0

The force acting upon the body as a result of the presence of the fluid

motion is given by

F, pn dS f ()nidS
i~ -J I -j t + t

0 0 (4.46)

Re lop 1 + •-)nidS *iot

S
[I 0

The Haskind relations as usually presented for a horizontal bottom or in-

finite depth, allow solution of the diffraction problem to be avoided if

the forced-motion problem has already been solved. Here we shall show that

this is also true if the bottom is uneven.

Instead of thp function * defined by the integral equation (4.43), we
(k)

shall use the function defined by the same equation with V (Q)
(k)replaced by n (Q). Then'*)satisfies the boundary condition (4.19) and

k 1
in addition

(k) . 0 on B (4.47)
in

We suppose that this function has been found.

73



CcnsideX now. the volume bounded by SOUF UB UR We apply the

Green identity (4.2) to O and 01

0(k) M WDn ) dS

f D in -Dnl1

S J-(4.48)

!ii" 0DO1• `O•o )I dS

K for bof.h (P and ( equal zero on the flat part of B (recall that

Dn ind
(P: U there). Also, (k) W(

Shee) Alo,0p(0 in 0 on B0 . Since both 0D and k)satisfy

the radiation condition, the integral over ZR tends to zero as R 0.-

Hence we may write the last equation in the following form:

SJ oDnKdS f (dS f k)dS

S0  S0  SOB
0 0 0(4.49)

- - J • I~n¢k)dS

Then Equation (4.46) may be rewritten as:

toFi Re{ lap [f 0 (~1 k) - (nk) )dS - k dS] eiat}
I fo I in In1f I

S B0  (4.50)

F is now expressed completely in terms of known functions. The ex-

pressiGn (4.50) differs from the usual one only in the presence of the

integral over B0 . This poses no problem in principle for in solving (4.43),

(k)
wehave found on both S0 and B.



DIFFRACTION ABOUT ISLANDS, HARBOR
OSCILLATION

As a sort of diversion, I should like to consider a slightly different

type of Green-function problem, one that is two dimensional in the mathe-

matical sense. We begin by considering the physical situ&tion shown in

Figure 17:

Figure 17 - Representation of the Physical Problem of
Diffraction about Islands

The bottom is assumed to be horizontal and the island to have vertical

walls. As a consequence of this simplified geometry, the problem may be

treated as two dimensional. The incoming wave will have the velocity

potential

•I (P't) = - os--o cosh k (z + h) sin [k (x cos 8 + y sin 8) - at]
I acosh kh 0 0

(4.51)

=Re (P)e , a gk tanh kh

Sand the surface profile

YI(x,yt) - A cos[k 0 (x cos o + y sin a) - at] (4.52)

Note that here we have taken z vertical (see Figure 18).

rZ

Figure 18 -Reference. Axes for DiffrAction about Islands



The diffraction potential D(Pt) - Re *D(P) e will satisfy the free-

surface condition, the radiation condition, the bottom condition, and

-nj 'InjC

From the form of D, we can see that it is possible to precipitate z out of

the problem by recognizing that D must have the form

cosh k0 (z + h) (454) S" •0D(x,y.z) "O (x,y)
X - y cosh k0 h

Then •D automatically satisfies the free-surface and bottom conditions.
D1

The Laplace equation becomes

2 cosh k0 (z + h)
A [ + +

Dxx + 'Dyy + 0 D] cosh k0 h -h

or (4.55) S~or

A + kk2  -o
2 D 0 O 0

This is known as the Helmholtz equation. Henceforth we shall drop the

circumflexes
As a preliminary step, we go back to one of the Green identities in

two dimensions.
-(-= -A

J(uAv vAu)dS (u v n )ds

rS C

If both u and v satisfy the Laplace equation, the left-hand side obviously

vanishes. However, if both u and v satisfy the Helmholtz equation, the

left-hand side also vanishes. Hence

(uv - VU)dS -0I.n



Now suppose that it is possible t. find a solution of Helmholtz

equation of the form

v - log + + F.(xky;9,n)

2 21/2
r - [(x- + (y - n) I

where P i (x,y) is a fixed point and Q = (Eo) is any other point in S or

on C (see Figure 19). Of course, v has a singularity as (C,n) ÷ (xy) so

S

Figure 19 - Region S for Helmholtz Equation

that, just as in the case of the Laplace equation, we must exclude a small

circle C• of radius C about P in order to apply the equation above

-- C • [Un-V~]dS 0F
f +Jf un u
C C

The same limiting procedure that we used earlier to derive (4.8) now

leads to

u(P) - J (vun - UVn)dS(Q) PCSnter(4.56)

C
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We return now to the island problem. Consider the region bounded by

C and a large circle of radius RjR (see Figure 20). We hope that we can

construct a function

@Cr
/

II
Figure 20 -Region Bounded by C and R ,

G(PQ) = log - + F
r

1
=log + F1 + iF2

such that G satisfies both the Helmholtz equation and the radiation

condition

"lim -(G - iK0 OG) - 0 (4.58)

We shall write, according to the formula we have just derived,

P) [DvG -VGV]dS + - 0DGVddS

C Z

Since both and G satisfy the radiation condition, we can show as we

did earlier that lfm 0. Hence
R-0

ODIe) = • f [,D (Q)G(P.Q) -DGVldS
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or, using the boundary condition on C,

(P) + 2 D(Q)Gv(P.Q)dS f - i J 1 ,(Q)G(eQ)dS (4.59)

If the point P is taken on the boundary C, then, as before, the 2n is

replaced by n:

(P) + (Q)G(P,Q)dS - v(Q)G(P,Q)dS (4.60)

C C

This is an integral equation for 0D and the remaining problem, aside from

numerical computation, is to determine whether the required function G can

be constructed.

We shall simply give the function rather than actually construct it.

It is possible to show that

G(P,Q) = i [Jo(k 0 r) + iYo(k 0 r)] - i Z H~(k r) (4.61)

The integral equation for D is then
D

(P) + D(Q)H0 2 vH (k r)dS (4.62)

C C

Once has been found on the boundary C, then we can use the more general

equation (4.59) to find cD(P) for P outside C:

D 4 f D I (0D(Q)Ho )(kor) + OIV(Q)H0 1 )(k 0r)]dS (4.63)

C

The above results are all well known in the theory of diffraction of

acoustic and electromagnetic waves upon infinitely long cylinders.

Let us now consider a slightly different geometrical configuration.

Figure 21 is supposed to represent a coastline with a harbor and an incident

wave. We again suppose the bottom to be at depth h and all coastlines to

be vertical cliffs.
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-xI
Figure 1 Incient Wae on aCoslnwihHrr

Fiur 2al folo anrcidentWae on aJ CosLine(17)ideln with tahbo

problem. At the mouth of the harbor, place a rigid fictitious wall M and

solve the problem in two pets. First we find the solution in the region

outside the harbor with the wall M in place, i.e.,

(4.64)
Dn sm In sum

In a simplified model of the shore line, it might be a straight line (see

Figure 22). In this case, the diffracted wave would simply be the

t Figure 22 -Straight-Line Coast

plane wave reflected from the shore line. Note that in this case, the
F, diffracted wave doer not satisfy the same radiation condition used earlier.



However, with the configuration shown in Figure 23, the earlier radiation

condition applies. *I + cannot really give the solution outside the

I D

LI

Figure 23 - Circular Coast

harbor for the effect of the harbor has been neglected. The incident wave

0I will certainly excite some sort of motion inside the harbor and, in

turn, this motion will excite some motion outside the harbor that will

radiate away from the mouth. Hence the motion in the exterior will be

represented by

Sext 0I + 0D + 0R

f where satisfies the radiation condition (4.58). For a point P in the
IR

exterior, we then know that

- f1jRHM - RHo ]dS (4.65)

MUS

If we let P be on the boundary and remember that R 0, we may write

this as follows:

(P) + • f RHO1dS fJ RVH()dS (4.66)

MUS M

We shall denote the velocity potential inside the harbor by *H" By

the Green theorem, we have for any point P inside the harbor
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iP r ( 1 ) HM dH(P 4f J 'VH~O -H Ov

HUH

where we have used the Green function that satisfies the radiation con-

dition because we want to match * R with * ext. Since * nIH - 0, part of

the integral vanishes. Letting P be on the boundary, we find

( - f OHH0])dS * f *00H0(1)dS (4.68) j
Mull N

Our matching conditions are the following:

* ,+* +* on
ext I D R H
' tR (4.69)

i •ext n OR ýn " •n on M

(since the positive direction of n is opposite for *R and H)

Before applying these in the above equation, it will be convenient to

introduce some new notation. Let us define the following operations:

HO(1P H f * dS (4.70)

A

HV 2 f H OV dS
A

Then :he integral equations (4.66) and (4.58) can be written as follows:

(I + Hol u)R

(4.71)

(i + H.)MU0H -H
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I
Let us denote the values of and f on M by

( - -l(P) E F(P), PEN (4.72)
I

Then for a point P of M, we may invert the above equations and write

R- (I + H l)NuS ()H 0l) F

(4.73)

*- "(I + H ()NuH)- (1)M FH 0V 0

Since •" +D+ oMwe have

+ (l)MuH)-IH (1)M F - - (I + H (l)MUS)-LH (l)M F + +
(I + H "o 0 0V 0 1 D

or

H F )F - [(I + Hl)HUH)i + (I + l)US)l-1 + (4.74)"0 (•0VI + D)(.4

lMmThis gives H F in terms of + We could proceed to find F, but
0Dthis is not necessary, for having found H(1)M F, we can now use

Equations (4.70) to find 0 or 0 on MuS or MuH, respectively. Once we

know 0 and *H on these boundaries, we can find them at any point of their

respective domains. For example, to find (P) for any P inside the

harbor, we use

SI •o1 (I)Mu ½ HO1)
H(P) H -H+ H()MF (4.75)

The operator notatioi: 1ýas been introduced for the following reason.

If we are treating the exact problem, then these are integral operator.

acting on continuous functions. However, if we discretize the problem by

looking for HI, say, only at discrete points P, P2, " " " on the boundary,
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we then replace the integral operator by a matrix operator and the con-

tinuous function by a vector. Nevertheless, the equations in operator

form remain the sam. Thus use of the operator notation introduces a

certain economy in thought.
The method has been successfully tried by Lee (1971) and in a more

elaborate version by Lee and Raichlen (1972).

AN INITIAL-VALUE PROBLDE FOR A WAVDIAKER

The last example that we shall consider differs from the preceding

ones in two respects: we use a time-dependent Green function and we are

able to give an explicit solution. The problem under consideration is

nothing but the initial-value problem for a wavemaker in a wall. It is

thus closely related to the problem considered on page 26.

We suppose that some section of the wall x - 0 is flexible and moves

in some predetermined way

x -F(yzt) , (y~z)ES 0  (4.76)

We may take the bottom to be given by

y - - H(xz) (4.77)

but eventually we take the fluid infinitely deep in order to give an ex-

plicit solution. The appropriate boundary and initial conditions for the

problem are:

Ft(,z,t) (y,z)'ES0

2x(Oyzt) -

- H(x,z),z,t) - 0 , h - i(xz) (4.78)

Il y -0, h" n



b
t(xOZt) + ýy - 0

* (xyZO) -Ot(xOIzO) 0 (4.78)
(Cont'd)

10I1, Iotl, IV.I, and IVitj are bounded

Since Equation (4.6) did not involve time, it may still be applied to

this problem. However, we wish to make an efficient choice of the Green

function. We shall suppose that it is possible to construct a function
G - /r + H(P,Qt) satisfying the following conditions:

G (P;O,n,r;t) - 0

G (P;&, - H(ý,l),¢;t) - 0 if h - H(x,) z)

lim G - 0, if h oo Srl- :

tt(P;E,O,C;t) + gi l 0 (4.79){ G(P;Q;t) - G(P;Q; - t)

or G t(P;Q;0) 0

G(P;&,O,,€;o) - -S..O(R72 )3)-

- 0(R-2),t 0(R ),G o(R
y

We shall now apply (4.6) to the fluid bounded by a large vertical

circular cylinder E of radius r, and the parts of the wall W, the freeR
Ssurface F, and the bottom B included inside E . However, we shall apply

(4.6) to 4t rather than 0. Furthermore, we shall take the time variable int
0 to be T and in G to be t - T. This does not, of course, invalidate the
use of (4.6). We then have the following:

44 J (P;) " 0 t- t(O'lC';T)(P;O'q'r;t - r) + *tCG ld'dC
f

R I.

+ J ~- r)- ~ d~d5



where we have already used the boundary conditions on B and the asymptotic
I - condition for large R to eliminate the integrals over B and E We may

[R1
also exploit the boundary conditions on W and F to write this equation

as follow.:

4�t 4r00(P;T) F - Ftt(n,;T)G(P;O,n,ý;t - T)dnd;

0

+ [f- t(,;)G(P;,0,;t - ") + t C ]dtdd

F tt

S- f Ftt(T)G(t -T)dnd

(4.80) 4

F

S"~~~ - fs Ftt(r)G(t - •ddf b (& T)G(t - T) + 4$ (T)G (t - )dd
f T Jt t t

F

We now integrate this equation from 0 to t:

t4 (P;t) - 411(P;O)f - fJ dr J Ftt()G(t - )ddd

S0 S0
0

S+ J [$(t)G() - G $t(t)G l4,)MdGd ( (4.81)

F

- (%(0)G(t) - O *t(O)Gtlt)Jd(d4.1

F

Li f 10(O)Gt) t(O) (t)d~I



If we now make use of the initial conditions for C and of Equations (1.9)

and (1.10), we may write this equation as follows:

L

41t (P; t) 47 4w(P;O0) - dT f F t(r)G(t-
f0 S0

0 (4.82)

f [Yt(E~r.,O)G(P;C,0,;t) + Y(&.C.0)Ct(P;E.0,ý;t)]d~dC

F

In fact, we have assumed that O(P;O) = 0 and $(,O,;O) 0 as initial

conditions for 0. Hence (4.82) becomes

tI
4T(Pt) - dT Ft(q,r,,T)G(P;O,q,ý;t- T)dndC (4.83)

0 S0

This solves the problem formally, but we are left with the problem of

finding a Green function satisfying (4.79). This function tan be con-

structed for either H(x,z) - h - const or h - =. We give it here only for

h - 'o We give first the result without the condition G (P;0,q,l;t) - 0:

0rS1 1 k(y+T)
G0 (PQ't) " r r 1 + 2 dk e J(la))[ - cos(v'i)]

[ 0(4.84)

1+ 2 dk ey J(kR) cos (rg/ )
r r f1

0

t= where

r [(x - + (y + )2+ (z - 21

1/2
2 2 21/2rI- [(x - •) + (y + q)

R [(x - +)2+ (z - 21/2

In order to construct a Green function that also satisfies G (P;Or,4;t) -

0, we use the method of images. Define
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1/22 2 2

r 2  1t(x + •)2 + (y _ ri) + (z - F;)2 i

2 2 2]/2
r3 [(x +) + (y4 r) + (z- .)].

•;21/2 iS[(x + .)2 + (z - 21/

2

Then 1+1 +1 1.i
G(P;Q;t) + + + r-4

r r1  r r1 2 3 (4.85)

- 2 J dk ek(y+n) [J 0 (kR) + J 0 (kR2 )] cos/

0

If we substitute this into (4.83), we obtain

47TPg(P;t) = - 2 dnid _

Jo 2 +2 2 2
S x +(y-l)2 + (z -;)

dfd;Jde(~l 0(t +z-F) 2  J F ( 4.86; )
oil

+4 dnldC dk e J X+ (z F 0)]/ t~ ,;)

S 0 0

cos vgdkt - ,T

If we make the special choice (2.38),

F(y,z,t) - F(y,z) sin at

the integrals with respect to T can be evaluated. An interesting problem

is then to find the asymptotic form of the solution as t + c, This should
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and does agree with the form obtained by the Fourier-integral method. The

asymptotic form may be written as follows:

ý.(P; 0 f dndr. F0,0

S0  (4.87)

go d

+ sin 1t 2k0 sin ot
Vx 2 +.(y + n)2 + (z 2 f0

_0 0

ko ( y+n)
j (kR) - 21TkO co ot e J 0 (k 0 R)

The use of time-dependent Green functions in the manner show. above

is apparently first due to Volterra (1934). It has been further exploited

by Finkelstein (1957), Wehausen (1967), and W.-C. Lin (1966). Many people
prefer to work entirely witch frequency by initially taking Fourier trans-

forms (or Laplace transforms).

I
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PART 5: THE METHOD OF MfULTIPOLES

The method of multipoles can be used in either two or three dimensions

an~d consists essentially in adding together singularities of higher and

higher order with intensities to be determined by the boundary conditions.

In, the case discussed here, the singularities are chosen to satisfy the

fre-srfceand rdainconditions. The intensities are then selected to

satisfy the boundary condition on an oscillating body.

The method occurs in various guises, but in the type of problem we con-

sider, it was apparently first used by Ursell (1949), who treated the

heaving motion of a circular cylinder. The analogous problem for a heaving

sphere was later considered by Havelock (1955). Others who have used it are
Tasai (1959), Porter (1960), and C.M. Lee (1968), but the list is not

exhaustive. '

The present approach to the method differs somewhat from the usual one,

but as will be shown later, the results are the same. The present approach
seems to have the advantage of showing from the beginning that the sum ofI

singularities usually employed really is sufficient to solve the problem.

Once again the method is illustrated by the problem of the forced harmonic

motion of a body in a free surface. The treatment will be two-dimensionalI

and will have much in common with t~hat of diffraction from a vertical plate. j

FORCED HARMONIC MOTTOS1

Figure 24 shows schematically the physical situation. We shall

nI

Figure 24 - scillating Body on the Free Surface

suppose that there is a complex velocity potential of the form

F(z,t) f cos at + f sin at (5.1)c
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From page 39 we may conclude immediately that both fc and f satisfy

Im{f'(x+iO) + ikof} 0 0, koaO2/g (5.2)

and

lim [f' ± kof 8 0 (5.3)
X :too

We further suppose that

lim f' 0 (5.4)
y 4. _W

and that

Ii < B if Iz! > a, y_< 0 (5.5)

where IzI - a contains the cylinder. Let the surface of the cylinder be

described by z(s) = x(s) + iy(s), where s is arc length measured from some

convenient point. Then

- f'(z(s)) z'(s) - (%-i~y)(x'+iy,) (5.6)

= xX' + *yY' -X

Ttang on

Hence. the final boundary condition is

Im f'(z(a()) z'(s) - -V (5.7)n

We now proceed almost exactly as in the case of the diffraction about

a vertical plate, i.e., by the reduction method. Define

g(z) = f'+ik f (5.8)
0

Then, repeating the steps taken in that problem except for considerations

concerning the singularity at z " -it, we find
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a1  a 2
g(-) - cz + a0 +-.+-2-+ ... IzI >a (5.9)

z

where c and a are real. We may also conclude from (5.4), just as in then

diffraction problem, that c 0 0. Furthermore, a0 may be absorbed irnLo the.

f stream function without loss of generality, so that we finally have

ig(") II a (5.10)
n

One of the important properties of power series representing analytic

functions is that they converge absolutely up to the nearest singuiar', y.

Since the function g must be analytic everywhere outside the body, we know

that (5.10) must converge at least up to a circle just containing the body,

as shown in an example given in Figure 25. If the body is a semicircle,

K BODY) SERIES CONVERGENT

"OUT,1;IDE THIS CIRCLE

Figure 25 -Region of Convergence

then the series (5.10) will converge right up to the body. Moreover, since

there is no singular behavior of g on the circle representing the body, the

radius of convergence must be smaller than the radius of the body itself.
I

It will also be true that the radius of convergence of (5.10) for a non-

circular body with smooth boundary will be smaller than the circle just em-

bracing the body. However, this is no guarantee that it will hold right up

to the boundary of the body. Thus, at the moment, we seem to be con-

strained to treat only a body of circular section with center itL the free

surface. For the time being we shall do this and later consider what to

do if the cylindrical section is not circular.
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We now integrato (5.10) and obtain

nwi nJ -d + 0 e(.1

where b b0  + io but the a are real. The path of integration is0 0 n
taken from z 4-w and lie3 below the body (&'ee Figure 26).

r:ýgure 26 -Path of Integration for (5.11)

We define

fj~ Wz) e e .dý (5.12)

An easy integration by parts shows that

ikofn - nfnl n$ n-1,2$3, .. (5.13)

Furthermore, it is easy tc~ establioh that



fn ) n - +k! ÷ (5.14)

so that

f f (1) ni (n) (5.15)

n+1 n n Ut I

Let us now consider only the infinite-sum part of fc or fat

a2
+ 2 [1kO,- , 2f3] +

n1l

+~+ a3] jO 3 Eiko f03 -3 4]

30(a )'s` ]- 4f5] + (5.16)
0 0]

a aa

f + k- + 2• + k

(10

"a4  a3  2 +
+ 1.7- + 3 - 43.2- + .

0 1
11 2 )2 33

b f + b b -4i.+
22 3 3

where b is real, b2 is imaginary and b3  b4, ... are coMplex, The last

series is, however, misleading, for it does not vake evident that the b n wst

be related if the free-surface condition is to be satisfied. This series

may be arranged as follows:
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V af" " + -2 + 2 1+.•".L 311

to+ - + 3.2)3 4 + i o + . t. (5.17)

Now each coefficient after the first is purely imaginary, and it is possible

to show that each term individually satifies the free-surface condition

[ and radiation con.ition. Define

i (a) + 1 LO 1 (5.18)
n n~ 1

Then it is easy to confirm that

lm{mn (x+iO) i- ik•m}- 0

Hence, b nmn (z), bn real, also satisfies this.
We assert that we may write

ann - blf 1 + ~ bnmn(z), b. - a1 1 b2 ,b 3 , I.. real (5.19)

n-2

of course, the manipulations leading to (5.17) do not prove this, but once

the combination defining m n has been recognized, it is not difficult to

prove (5.19). For example, we may do this by using the relationship

f n n 2 [ + (+nn+2]
k0

Let us now consider
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ik0

a k f (C-2'

We shall make the change of variableskk

--km or k- 0- - (5.20)
0 0 -k

Formally, this gives inmediately

11

kf -k0 dkj -- dko 0

where the path of integration is still to be determined. Let us take our

pahin the C-plane as shown in Figure 27 (two cases are shown).j

r-PLANF

Figure 27 -Paths of Integration in C-Plane
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The transformd paths in the k-plane will then appear as shown in figure 28.

The new paths are a rotation and otretching of the original paths.

lA

] k-PLANE

SFigure 28 -Transformed Paths in the k-Plane

S• ~positive x--axis (see Figuie 29).

I .-

R"

I /

ii I, Figure 29 Arcs r Joining the Path tok-ln

L i psitve xaxi (se Fiule29)
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We find easily that the contribution of ER 3oe8 to zero as ! t. Hence

we may deform the path tn one olong the x-axis except for dodging around

k0 (see Figure 30).

Figure 30 - Path along the x-Axis

If we choose the path around k as a seml4 circle of radius c and then take

the limit as c -v 0, we will obtain a Cauchy principal-value integral plus

a half residue:

fl(z) - 0- dk - wie (5.21)

( *0

* : Now consider the radiatiorn condition (5.3). Tn order to satisfy this,

.* ; we must find the asymptotic behavior of f as x + ± •. If we use the series

(5.19) as part of the representation, it is obvious that we. may discard the

Scontribution of the terms in a sa x + ± m. Hence we need to examine the

asymptotic behavior only of

-ikoa
alf (z) + boP (5.22)

It is evident that

_ikoz
f(r) b e as x. + (5.23)

If we write (5.22) in the form
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I ik
I 1k0  - drF•"' ÷ boe-4 0

ik -i

Ssee that

I -ia * -ko1k.

As in the case ditcuused on page 50, where the path in Figure 11 has been

V replaced by that in Figure 12, We May replace Lhe inttegral from r• to so

by the closed path sho,= in Figure 31.

Figure 31 - Equivalent Path of Integration for f(z) j

C E
-R -RJ

But then we know from the Cauchy Integral theorem that

dC 2wSiko~d• 2iri

Hence

I -ikoz

f(z) (-2viaI + bO) e as x " - w (5.24'
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We now apply the radiation condition (5.3) to f and fs, adding appropriate

subscripts to the cpefficients:

f + kofs -iko(b + ib + ko(b + ib )0 as x +

Os0 0 co co + 0(bso so
I I I II

f - kofs -iko(-27riac + bo + ibo )

-k0(-27riasl + bso + ib )-o 0 as xc+-

These equations yield

b so ,-b bc a acl, bc 0  bso irasl (5.25)

SLet us now go back to (5.21) and substitute this form for f

-ikz -ik~j -ikoz

f c acl k-k dk - ie + (as + a)e

0 0

|: y1
+ bm

n-2

Sfs as e dk - rie-IOz + -ff(-acl. + iasle

+ I bsn mn
n-m2

These simplify to the following forms:
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L -6  ...- dk + iwa ea + b, mfc -cl k-k0 cl n n .

k n-2 n
(5.26)

Se-ikz -ik 0 zfs -as k-k-- dk - racl e + bsnmn:

0 n-2

Before returning to the problem of satisfying the boundary condition

on the body, we make one more digression, namely, to explain why this is

known as che method of multipoles. Suppose that we wish to construct a

function behaving like a source of strength Q cos at and vortex of intensity

r cos at at the point c in the lower half-plane, i.e., like

r+iQ2wi log (z-c) Cos at

and also satisfying the free-surfa'ce and radiation conditions andIi i vanishing as y ÷ - 0. This problem can be solved (e.g., by the reduction
method) and we find

G(z,c)- log (z-c) +r-iQ log (z-z)

(5.27)
_ik 0(z

i(r-iq)e sin at

-G cos at + G sin at j
C 8

The method of multipoles, as applied to the problem we have been con-

sidering, would consist in ýissuminp that the solution can be expressed as

a sum of G and its derivatives evaluated at c - 0, i.e., that

f a G (ZO) + a G (z,o) +aG ( + a..., real

(5.28)
f a 0G (z'0)
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Since there is no circulation in the' problem we are considering, we may set

r-o. Furthermore, there is no loss in generality in setting Q, since each

sumiand is multiplied by a real coefficient to be determined later. If we

also set c-O, (5.27) then takes the following form:

-ikz

!iG (..o) - ki

0

U•' Gc -i z k

G (z,O) - -e k5.29)

Now if we examine the terms of (5.26) before the summation, we see that

by setting asl70, bsn-0, we have exactly the same series as (5.28).

Although (5.26) may appear to be more general because of the presence of

the terms with a.,, and bsn, this is only an apparent generality, an

appropriate shift of the time axis can achieve asl-bs -O. Hence the method

we have developed is equivalent to the method of multipoles.

Nxt we must satisfy the boundary condition (5.7) by proper choice of

the coefficients acl, asl, bcn, and bsi. For the case to which we are pre-

: sently restricting ourselves, that of the semisubmerged circular cylinder,

this condition may be given a slightly simpler form. In order to exploit

symmetry, we introduce the angle y shown in Figure 32.

* I
Z ' ei0 -_Ire1:

: I

Figure 32 - Definition of Angle y
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As in (4.13), we shall write

V (xy,t) Vn cos at + V sin at (5.30)

Then (5.7) takes the form

4 cn* -- cx sin +•cv cos y nc) (y)

asn - sin y+ •sy cosn7V= (y) (5.31)

It will be sufficient to discuss one of these although, as we shall see,

the two must be solved together. From the solution (5.26) we may. compute

£ ikz -ik zf =+ isc Ukd- i~aslo + bmn (5.32)
Sc Cl k-k00 8120cn-n

From (5.18)

in (z) =-(n+l) +-2- iko n1l -(n+l)mn 1 (Z) (5.33)

z z

Into (5.32) and (5.33), we substitute z - -irei and separate real and

imaginary parts. This somewhat tedious computation yields (perhaps) the

following:

of -krcosy
- e sin(krsin )- kdk

Icx C a 1  k-k 0

-korcos y
- Ialkoe sin(k rsin y)

(5.34)
kor sn(pI7

2 (+1 - 1 )p [c(+ 1
+ I b cs(2p+2)y sin(2p+l)

P-i r -

-9+ _.1~

+- (-1 )q+l n(2q4 3)y + k2- cos(2q+2)
q-l , r2q+3 2q42
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e-krcos ycos(krsin ) kdk
C ! f k-k 0

0I0
-korcosy

+ ira e cos (korsiny)

S+ Z bc,2 r2P2 Iskor
2p+1 ~ +1 I0 cs2+v+ b 2 (-I.)" in(2p+2)y + cos(2p+l)

a c,2p

OD1

+ b 2q+2 (_I)q+l os(2q+3)y - i(2q+2)•- bc, 2q+l r2q+3 Ic2q+2 Y
q-l r

It seems reasonable now to skip over some details and to observe thatI (5.31) takes the following form:

pCO

'L (y) +a Y. N (y) V (y)

a (y)s+ a (Y) + I bnNN (y) V (Y)

e l l a n-2 n

There are evidently an infinite number of unknown coefficients, but also,

of course, an infinite number of values of y where these equations must be

satisfied. We shall not discuss the methods that have been used to solve

approximately these equations by truncation. Unfortunately, the various

functions have no orthogonality properties.

We must now consider the question of what to do L' the cross section

of the body is not a semicircle, for ae we have seen earlier (see page 97),

we have no reason to believe that the circle of convergence of the function
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S(z) in (5.10) will be inside the body boundary (plus its reflection).

What we do in this case is to make a preliminary mapping af the exterior

of the body plus its reflection onto the exterior of a circle. However,

the mapping chosen Imposes a restraint upon the body: it must intersect

the free surface perpendicularly.

Let ý be the plane of the circle and z the physical plane containing

the body in question (see Figure 33).

ý-PN zPLANE

Figure 33 - C- and z-Planes

Then it is known that we can map the exterior of the circle onto the

exterior of the body and the ý-axis into the x-axis by a mapping of the form

m4 + m Cm real (5.36)j

Let us suppose that f(z) is one of f or fs . Then

f(z) - f(z(r)) F(M) (5.37)

defines an analytic function in the 4-plane that can be considered as a

velocity potential there. What happens to the free-surface condition?

Since Ft(4) - f'(z) z'(ý), we find

f (z) + ikof(z) -0 f-IW. + ikOF()
z (W)

Hence condition (5.2) becomes
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{F (m+iO) + ikoF(t+iO) 0

T z (ý+iO)

or, since

z (g+iO)- 1- __

is real,
100

'm{ (+O)+1 0  i m ~ M~]F+i) 0 (5.38)

This is the boundary condition that must be satisfied on the real axis out-

side the circle.

We shall now proceed similarly to the earlisr case. Define

G(ý) - [+ imo - F(C) (5.39)

This function can be extended by reflection into the whole complex plane

and furthermore can be shown by easy arguments to be bounded outside some

circle lj " a containing the mapping circle. As before, we find

Xa
G(4) - , a real, I•1 > a (5.40)

niln n
.I

But then, since G(ý) must be analytic right up to the boundary of the

mapping circle, the Laurent series (5.40) must converge right up to and

including this circle.

We are now left with the problem of integrating the differential

equation

F' +i [r ~mC an
(E) + ik 0  1F(i) - n
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The integral can be found in textbooks on differential equations (.g.,

Kouke, "1ifferentialgleichungen: leunguaethoden und tZsusgen," p. 16)

and may be written as follows:

F(C) - exp{-iko[ +ECm4"mj 3 B + fa exi{iko[;+FUCCmj1)d1

"(5. 42)

where the path of integration is below the mapping circle and B is complex.

Let us define

F() exp{-i%[C+ECmr 1)C- -exp{iko[;+ECsC-mjldý (5.43)

Then (5.42) may be written in the form

F(C) - B exp{-iko [C+ECm)-.+ n an Fn( ) (5.44)

If we integrate F once by parts for n > 2, we find

-n+l

f ir, 1 11)

1 1A0 1k i
n-l nl n- 0%- nlm m+n

Let us replace n by n+l and rearrange the result as follows:

(gn 1 1cm.lT ~

0m- n ik n

n = 1,2,3,
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If possible, we should like to do something like we did on pages

99-100, i.e., to replace the awkward integrals F21,F3 ... by polynomials,

somnehing analogous to the m (s) of (5, Equation (5.45) is the analog

of (5.13)o However, to minipulate terms as we did in (5.16) and (5.17)

would seem to require a remarkable insight. Let us write out (5.45) for

n 2,3, .... for several terms,

2 -

F2  - F3  C1 F 2C2 F5  3C3 F6 k

3
F' U-0-F F -2C F ...-

3 1 F4  5 2 6 ik 0 •3

~1 1 (5.46)

5 1 11

5- F 6  A 1 5

0H 0
It seems evident that Fn must be expressible as . series starting with C-u:

'k0
Fi n n ~ k (5.47)

If we substitute this expression into the defining equation for F :

4'
r '-inca~ 1

F + Il- Fn-
4 ~n 0L .n~ I~

it is not difficult to establish the following:

B (n) 1 ) -n B2(n) _ (n) +-- , B1(, nl (n + BOn

P k0  iko 1 1 0)

and in general that
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q-1
(n) - (ui) (-

q+l ik q as q-r r 'qi(5.46)

r0O

Although we could proceed with this expreecion for Fit would require
careful attention to detail in separating real and imaginary parts in the

coefficients B (n) V q>2.
q

In order to avoid this difficulty, it has been customary to proceed

somewhat differently. Instead of the sum E aF in (5.44), we shall trynf
to rpaeit by another su d A4 d nreal, where the M1n will be defiuad

below. We shall again suppose that M n has the form

nf n -OC (5.49)

but we shall begin by imposing only the condition

Is11M + ikol2 ~J 1-0 when n O (5.50)

Of course, F R satisfies this condition also, so that we must expect to

tcbtain tha following equation (we temporarily drop the superscript ti)z

I= 1kobo + (iknbl - nbo) ~-1 +

k--

as k-1
+~[ik0e 1  (k+n)bk ik0  (k-.r) Ck br] ~k1

(5.51)

If we now set bkmk+b and rC-t+i0, the coefficients of each power of

Syield the following equations:
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b 0  .0

b1  k 0  0

b, n+l b,

b3  k b 2  C 1  (5.52)0!
tI I|

b - b3  + 2C2 + Clb2

k-iS n+k ",

bkkl " 0 bk + (k-r)Ck-rb

r0O

Evideiat.y, for each value of k, bk is not determined, but bk is
k 0  k-Vki• 'I I !

determined as a linear function of the preceding b , ... , b and b.

Wc can choose the bk as we please. We shall do this in such a way as to

make bk -0 for k>2. Thie can be accomplished by choosing

k C1  (k-1)cl
b0 0 - b1  - 0, b2  " - k0 n-2 "" bk= -ko • n.k..

(5.53)

The only nonzero real part is b1 -1. The series (5.49) then has the

following form:

1k0  1 1 • k- 1

n n)mF +1i k-i n+k+l ~n+k+1 (5.54)

The Mn may be considered as the analogs of the En of (5.19).
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We have not yet shown that a naI a can bft teplaced by a 1 j1+ d n Hf

*with d nreal. With some furth,ýr i'anipu~lation, we can establish the follow-

*in& relation between F nand n

M !a m~ Fn + [k02 Q + -n-)1 ] %~+2 + k'1+

r-3
2 {rl(1+ 1y. k(r-k-2) C~~ )(.5

k-l

Since the coefficients on the right-hand side are all real, it is evident

that sum dn% it dn real is equivalent to a sum anFnwt
that anih-2 F w th a

H real. Since the coefficients a nhave not yet been determined, it is not

necessary to know the relation between the {aI and the (dn1. Instead, we

~, I shall determine the d directly.
Equation (5.44) for F(,,) now takes the form

FM~ - B exp{-ik0[C+EC (fl 1 I + a 1F 1 + 2 d n M d n real
n-2 (5.56)

The radiation condition and tL~e boundary condt.ion on the body remain to be
considered. For this purpose there may be some gain in replacing Fl~ by

f WO)j where f is dcefined by (5.12) with nu-1. This is not, of course,1 1
the same funct~ion as F 1() but it can be used in (5.56), as we shall see

below:

zikox exp ikR[+EC.C']
e dn 0 mr -da f [1 -2

f z -a in



m-c

*xp 2+{1÷Cqu]/• ub

UC

0 1 l+ an d C
fi

where a is real. Evidently the difference between f (s(C)) and F (C) will

be asu• be a nn2 n n which, in turn, can be replaced by a sun of tn

i!Hance we may replace (5.53) by

F(C) B exp{-ikO[C+ECm M ]C + aef1 (&(C)) +

+ dnU, d dn real (5.57)

where these d are different in general from those of (5.56).

With this change. we may take over completely our earlier relationsth
on page 104 that were derived to satisfy the radiation condition, for the

, ~ Mn play no role in this condition. i

In order to satisfy the condition (5.7) on the body in the physical

plane, we must establish a relation between this condition and one in the

ý-pld-,e, Let us first rewrite (5.7) for tha case where the parameter is

no longer arc length. Let it be p. Then (5.7) becomes

II

IM f(IpZP)l -n (5.58)

Let p now be a parameter in the c-plane describing the mapping circle:

?C(p). Then the body in the physical plane is described by
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R(p) - s(•(p))

and
5(p) -s3 (g~p)) g (P)

Since

f (s) a(;) - 1(;)

we find
(•pl •(p) - f 11•1)€( "F 1€ ;(p)

condition (5.59) then becomes the folloving In the C-plane:

is ( ) - -v (5.59)

WO) C (01

To develop the analogs of (5.35) would '.Ivolve us in more details

Sthan seem appropriate to carry through in those lectures. We ter.sinate

j the discussion of this method with the remaik that it is possible to

develop this into a computational technique for bodies intersecting the .

Nil free surface perpendicularly, as has been chown by Tasai (1959) and Porter

(1960).
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